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ABSTRACT

The versatile Markovian point process was introduced by M. F. Neuts in 1979. This is a rich class of
point processes which contains many familiar arrival process as very special cases. Recently, the Batch
Markovian Arrival Process, a class of point processes which was subsequently shown to be equivalent to
Neuts’ point process, has been studied using a more transparent notation.

Recent results in the matrix-analytic approach to queueing theory have substantially reduced the
computational complexity of the algorithmic solution of single server queues with a general Markovian
arrival process. We generalize these results to the single server queue with the batch arrival process and
emphasize the resulting simplifications.

Algorithms for the special cases of the PH/G/1 and MMPP/G/1 queues are highlighted as these
models are receiving renewed attention in the literature and the new algorithms proposed here are simpler
than existing ones. In particular, the PH/G/1 queue has additional structure which further enhances the
efficiency of its algorithmic solution. Also, the two-state MMPP/G/1 queue, which has applications in
communications modeling, has an extremely simple solution.
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1. INTRODUCTION

The versatile Markovian point process was introduced by M. F. Neuts in [1]. This is a very rich class
of point processes which contains many well known arrival processes as special cases. Among them are
the phase-type (PH) renewal process, the Markov modulated Poisson process (MMPP), overflows from
finite Markovian queues, etc. In each case, arrivals are allowed to occur in batches where different types
of arrivals can have different batch size distributions. The price paid for such generality was an elaborate
notation required to keep track of the different types of arrivals. Although the notation was complex, the
analysis of queues with this point process as the arrival stream proceeded, conceptually, in an analogous
fashion to that of queues with simpler arrival streams. Thus it was possible to solve in a unified
methodical analysis a whole class of queueing problems, unifying many results in the literature.

This was first accomplished by V. Ramaswami for the single server queue with the versatile
Markovian point process as the arrival stream [2]. Since then, the infinite server, c-server (with
deterministic service times), and finite queue versions have been solved, see [3], [4], and [5]. Although
the computational algorithm suggested by Ramaswami’s analysis has been shown to be numerically
stable [6], in practice it has not been feasible to implement it in its full generality. The setup computations
alone are a formidable burden on both CPU time and storage. Thus, until now, practical numerical
solutions have been limited to particular cases of the general model.

In our analysis of a single server queue with server vacations [7], we desired the solution to the queue
with a PH-renewal arrival process and the one with a correlated arrival stream such as an MMPP. As our
focus was not on batch arrivals, we did not proceed with the full generality of the versatile Markovian
point process, but constructed a new process which contained both PH-renewal and the MMPP processes
yet whose notation was very simple. We called this process the Markovian Arrival Process (MAP). This
construction is easily generalized to the Batch Markovian Arrival Process (BMAPF) to allow for batch
arrivals. Although this new class of processes was originally thought to be more general than the versatile
Markovian point process, we later showed that the two processes were in fact equivalent. The only
difference is that the BMAP involves much simpler notation.

Special cases of the BMAP/G/1 queue have received renewed attention in the communications
modeling literature. The interrupted Poisson process has long been used to approximate the overflow
traffic of finite trunk systems [8]. More recently, modeling of packetized voice and data traffic has
required consideration of more complicated arrival processes than the Poisson process. It is now well
known ([9], [10]) that the interarrival times in the packet streams are strongly correlated. The MMPP was
used in [10] to approximate the superposition of packetized voice processes and in [11] for a related
process. The MMPP was chosen because it is a tractable, non-renewal stream which could match certain
statistical properties of the original traffic. The MMPP/G/1 queue approximated the first two moments of
delays as well as the tail probabilities with high accuracy. Other algorithms for solving the MMPP/G/1
queue are presented in [12] and {13]. For a case where the MMPP is obtained as the superposition of



interrupted Poisson processes see [14]. Other special cases of the BMAP/G/1 queue which have appeared
in the literature are related to the PH/G/1 quene. We refer to the extended, annotated bibliography [15]
for many examples and special cases.

We present here new results for the BMAP/G/1 queue. In particular, we show that the matrix G,
which arises in the matrix analytic approach to queues of M/G/1 type and is the key ingredient to the
computational procedures, has an exponential form. This exponential form leads to an efficient algorithm
for the computation of G as well as the coefficient matrices in the transition probability matrix of the
Markov chain embedded at departures. These are needed to compute the queue length distribution at
departures and at arbitrary times. This key result generalizes similar results in [7] ,and {16]. The
algorithms presented here allow for a general implementation of canned computer programs for solving
the general model. Such a program could be used for comparing vastly different arrival processes
entering a single server queue.

A further use of this algorithm is to evaluate the performance of superpositions of renewal processes
entering a queue. If the renewal processes are of phase type then the superposition is a special case of the
BMAP. Although the size of the matrices involved grows geometrically as the number of streams, for two
or three streams the computations are completely feasible. The delay seen by customers in the individual
streams can be derived from the results presented earlier. Similar calculations for the MMPP/M/c/c +K
queue were presented in [17]. These exact expressions could be used to validate various simple
approximations that have been proposed, see e.g., [18] and [19].

The remainder of this paper is organized as follows. In Section 2, we define the BMAP and present
some familiar special cases of the process. Section 3 consists of an outline of the traditional matrix-
analytic approach to solving the single server queue with a BMAP as the arrival stream emphasizing the
framework of the new notation. New results for the BMAP/G/1 queue are presented in Section 4. Section
5 summarizes the algorithmic simplifications for the general model, highlighting the substantial savings in
both computational complexity and storage which are afforded by the new results. In Section 6 present
several special cases which have particularly simple solutions. Conclusions are presented in Section 7.

2. THE BATCH MARKOVIAN ARRIVAL PROCESS

To motivate the Batch Markovian Arrival Process, BMAP, we first consider a Poisson process with
batch arrivals. Let the rate of the Poisson process be A and the probability that the batch size equals j be
pj. j21. N(1) is the number of arrivals in (0,r]. The process {N(¢)} is then a Markov process on the
state space {i: { >0} with infinitesimal generator of the form



Q0= do di - | M

where, dg=—A and d;=Ap; for j21. After an exponential sojourn (with mean A~ in state 7, the
process jumps to state i +j with probability p; where the transition corresponds to an arrival and j
corresponds to the size of the batch.

The Batch Markovian Arrival Process is constructed by generalizing the above batch Poisson process
to allow for non-exponential times between the arrivals of batches, but still preserving an underlying
Markovian structure. To accomplish this, we consider a 2-dimensional Markov process {N(¢), J(¢)} on
the state space {(i,j): i 20, 1<j<m]} with an infinitesimal generator Q having the structure,

Dy Dy Dy Dy - -
Dy Dy Dy - -
Q= DODl"’ (2)

where D, k20, are mxm matrices, D, has negative diagonal elements and nonnegative off-diagonal
elements, D, , k=1, are nonnegative and D, defined by

D= 3D, 3)
k=0

is an irreducible infinitesimal generator. We also assume that D#D. If N(r) represents a counting
variable and J(¢) an auxiliary state or phase variable then the above Markov process defines a batch
arrival process where transitions from a state (i,;) to state (i +%,1), k21, 1<j,I <m, comrespond to batch
arrivals of size k, and thus batch size can depend on / and j. The matrix D is a stable matrix which
implies that it is nonsingular and the sojourn time in the set of states {(i,j): 1<j<m]} is finite with
probability 1. This implies that the arrival process does not terminate. For future reference, we define the
matrix generating function




©a

D(z) = Y. Duz%, for lzl<1.
k=0

Let 1t be the stationary probability vector of the Markov process with generator D, i.e., T satisfies
"D =0, ®e=1, (4)

where e is a column vector of 1's. The fundamental arrival rate for the arrival process is then given by

A"l = & 3 kDye = nd,
k=1

whered = 3 kDe.

A constructive description of this process is useful for visualizing the evolution of the process.
Assume the underlying Markov process with generator D is in some state i, 1 <i <m. The sojourn time in
that state is exponentially distributed with parameter A;. At the end of that sojourn time, there occurs a
transition to another (or possibly the same) state and that transition may or may not correspond to an
arrival epoch. With probability p;(0,k), 1<k<m, k=i, there will be a transition to state k without an
arrival. With probability p;(j,k), j21, 1<k <m, there will be a transition to state ¥ with a batch arrival
of size j. We therefore have, for 1</ <m,

m -] m

2pi0.k) + 3 Xpi(jk) =1,
k=1 j=1 k=1

k#i

and with this notation it is clear that (Dg);=—X;, 1<i<m, (Dg)u=A;p;(0.k), 1<i,k<m, ki, and
(Dj)p=nripi(J,k), j21, 1<i,k<m. The matrix Dy thus governs transitions that correspond to no
arrivals, and D; governs transitions that correspond to arrivals of batches of size j.

If P(r) represents the transition probability matrix of the Markov process { N(1),J(t) }, with generator
Q, then it satisfies the Chapman-Kolmogorov equations

P'(t) = P()Q, fort>0, with P(0) = I. (5)



2.1 The Counting Function:

Let N(z) be the number of arrivals in (0,] and J(z) the auxiliary phase at time 7. Now let
Pi(n,1) = P{N(2) = n, J(1) = jl N(O) = 0, J(0)=i}

be the (i,j) element of a matrix P(n,r). If P(¢) is partitioned into mxm blocks then P(n,t) is given by
the n-th block in the first row of P(r). Therefore, we see that the Chapman-Kolmogorov equations (3)
with the structure of @ in (2) imply that the matrices P(n,r) satisfy

n
P'(n,t) = ¥ P(j.t)D,_;, n=20, 120, (6)
j=0
P(0,0) = I
These equations can be derived directly by considering the possible scenarios that result in n arrivals by
time ¢ +4dt. That is, there could be j arrivals up to 7, 0<j<n, and a batch arrival of size n —j in (¢,z+dr).

Multiplying the a-th equation in (6) by z”, n 20, and summing yield that the matrix generating function
P#(z,t), defined by

-

P*(z,) = ¥ P(n,n)z", for |zl<1,
n=0
satisfies
d
E—P*(z,r) = P*(z,0)D(2), (7N
P*(z,0) = 1,

and is therefore explicitly given by
P*(z,0) = 2@ for |7l<1, 0. ®)

By differentiating successively in Equation {8) we may obtain expressions for the moments of the number
of arrivals in (0,¢]. (See [20] for similar calculations.)



2.2 Special Cases:

Many familiar arrival processes can be obtained as very special cases of the BMAP. Here is a selected

sample of some of the more useful examples.

a)

b)

<)

The Markovian Arrival Process (MAP). The MAP defined in [7] is a BMAP with all arrivals
consisting of a batch of size 1. We therefore have D;=0, j>2. This class contains many well
known arrival processes, some of which are:

¢ Poisson process. For Dg=~ L, D| =), the MAP is the ordinary Poisson process of rate A.

o PH-renewal process. The phase type (PH) renewal process, [21], [22], with representation
(a,T), is a MAP with Dy = T and D, =—Tea. This class contains the familiar Erlang, E,,
and hyperexponential, H;, arrival processes as well as finite mixtures of these. See [23] for
other examples.

o Markov-modulated Poisson process (MMPP} (see, e.g., [10].) The MMPP with infinitesimal
generator R and arrival rate matrix A=diag(A;,...,A,), is a MAP with Dy = R-A, and
D, = A. The MMPP is a particularly useful class of non-renewal processes.

o Alternating PH-renewal process.
» A sequence of PH interarrival times selected via a Markov chain [24].
s A superposition of PH-renewal processes [25].

o The superposition of independent MAP's.

We refer to [7] for additional examples and for the representations of the above examples.

A MAP with i.i.d. baich arrivals. Consider a MAP defined by the pair (D¢, ; ) where each arrival
epoch corresponds to a batch arrival. If successive batch sizes are independent and identically
distributed with probability density {p;, j= 1} then this process is a BMAP with D;=p; D, j21.

A batch Poisson process with correlated batch arrivals. Consider a batch Poisson process where
the batch size distribution of successive batch arrivals is chosen according to a Markov chain. For
example, let {q;(k), k=21} 1<i<m,, be a set of m discrete density functions and let P be the
transition probability matrix of an m-state, irreducible Markov chain. Let the rate of the Poisson
process be A and assume that successive batch size distributions are chosen from the set
{q;("), 1<i<m} according to P. This process is then a BMAP with Dy = —AJ and
(Dy)ij = MPi;q;(k). This example is easily extended to a MAP with correlated batch sizes.



d) Neuts’ versatile Markovian point process. That process, introduced in [1], is constructively defined
by starting with a PH-renewal process as a substratum. There are three types of arrival epochs
which are related to the evolution of the PH-renewal process as follows. There are Poisson arrivals
with arbitrary batch size distributions during sojoums in the states of the Markov process governing
the renewal process. The arrival rates of the Poisson process and the batch size distributions may
depend on the state of the Markov process. The underlying Markov process can change states
either with or without a corresponding renewal. Each time the process changes states there is a
batch arrival (the batch size may be () where the batch size distribution can depend on the states
before and after the change as well as whether or not a renewal occurred.

It can be shown that this process is equivalent to the BMAP. An advantage of viewing the
process in the framework of the BMAP is that the notation is much simplified. For example, using
the notatton of [1], we have the following correspondence:

Do = A(A)A[p(0)] = A(R) + Tog(0) + T?aor(0), €))

Dy = A ALp(O] + Tog(k) + T°aor(k), for k2l

Queueing systems with the versatile Markovian point process as the arrival stream are studied in
(2], (3], [4], and [5].

3. THE MATRIX ANALYTIC APPROACH

In this section we outline the solution procedure based on the matrix-analytic approach to the
BMAFP/G/1 queve. This approach was pioneered by M. F. Neuts and has been used successfully to
analyze a number of complicated queueing systems. (See e.g., [2], [10], [20], [26]). The main results for
this section were originally proved by V. Ramaswami for the equivalent N/G/1 queue. We will therefore
not prove the results again here, but will simply restate them in the BMAP notation. The purpose of
including this outline is first, to show how the analysis itself serves as a recipe for the algorithmic
computations of many desired performance measures; second, to have expressions for many of the
intermediate quantities and performance measures in terms of the new BMAP notation and third, to have a
benchmark to compare the new algorithms which are presented in Section 5.

3.1 Model Definition

Consider a single server queue whose arrival process is given by a BMAP defined by the sequence
{Dy, k20}. Let the service times have an arbitrary distribution function, H, with Laplace-Stieltjes
transform (LST), H, and finite mean p;. We also make the standard independence assumptions and



assume that the traffic intensity, p=pj/A] <1.

The Embedded Markov Renewal Process at Departures

The embedded Markov renewal process at departure epochs is defined as follows. Define 1, to be the
epoch of the k-th departure from the queue, with T5 = 0, and (&, J;) to be the number in system and
the phase of the arrival process at Tf. Then (§;, Ji, Trs+1 —T4) is a semi-Markov process on the state
space { (i,j): i20, 1<j<m }. The semi-Markov process is positive recurrent when the traffic intensity
p = W1/A] < 1. The transition probability matrix is given by

(Bo(x) B1(x) Bax) - - -
Ao(x) Aq(x) Ay(x) - - -

Py =1 0 A A | 40, (10)
0 0 Ag(x) - - -

where for z 20, A n(x)and én (x) are the mxm matrices of mass functions defined by

[An (x)];; = P{ Given a departure at time 0, which left at least one customer in the system and the
arrival process in phase i, the next departure occurs no later than time x with the arrival
process in phase j, and during that service there were n arrivals},

P{ Given a departure at time 0, which left the system empty and the armrival process in

[B,(x)];
phase i, the next departure occurs no later than time x with the arrival process in phase
J» leaving n customers in the system}.

Queues with embedded Markov renewal processes whose transition probability matrix has the structure of
(10) are referred to as queunes of the ““M/G/1 type”” or queues of the ‘‘M/G/1 paradigm’’[20]. The
nomenclature arises due to the similarity of (10) to its scalar analogue in the ordinary M/G/1 queue.

From the definition of P(n,?), it is clear that

An(x) = | P(rp)dH(D). (11
4]



‘We define the transform matrices

Apn(s)

N
ot 3

e~ dA,(x), B,(s) = [e™dB,(x),
0

o0

A(z,5) = Ap(s)z", B(z,s) = iBn(S)Zn;
=0 :

n= n=0
and for later use, the matrices

Ap = Ay(0) = Ay(s), B, = B,(0) = B,(x), (12)

A = A(1,0), B = B(1,0).

Using the properties of P(n,t), it can be shown that
A(z,s) = | e==eP DG (x). (13)
0

From (13), we see that

o

A= [ePdH(). (14)
0

We note that the matrix A is stochastic, and that the stationary vector Tt defined in (4) also satisfies
nA = t, e = 1. The vector B, whose j-th component is the conditional number of arrivals during a
service which starts with the arrival process in phase j is defined by

d
= 2 4(z.0 ,
B dz (z,0)| e

z=1

and is given explicitly as
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B =(ni/Ae + (A-D(en+D) 'd. (15)

For all queues of the M/G/1 paradigm, the traffic intensity, p, is given by p=xnf (see, e.g., [27}) which
by (15)is seentobe p = |/A}, as expected.

Finally, using arguments analogous to those in [7], we obtain the following expression for the matrix
B(z,s).

B(z,5) = 27 [sT-Do17 [D(z)-Do)A(z,5), ' (16)

which implies that B = (/ —Dj' D)A. By expanding B(z,0) in a power series in z, we see that, for n >0,
the matrix B, is given by

n
B, = -Dg' ¥ Dis1An—i. (17)
k=0

We note that D is a stable matrix, so that —Dg' is nonnegative. Also, the (i,j)-entry of the matrix
—Dal D, is the conditional probability that an idle period ends with the arrival of a batch of size k and the
arrival phase j, given that the idle period began with the arrival phase i. Therefore, the above formula has
an obvious probabilistic interpretation.

3.2 The Stationary Queue Length at Departures

The stationary vector of the Markov chain P = 13(oo), embedded at departures from the queue, is the
joint probability density of the stationary queue length and the phase of the arrival process. From (10),

we have

—BOBIBZ"'
Ag AL Ay - -
0 Ag A, -

0 OAO"V'

(18)

Writing the stationary probability vector x of P in the partitioned form x = (xq, xy,...), where x;, i 20,
are m-vectors, the system of equations, xP =x, can be expanded as
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i+l
x; = xoB,' + Z XvAisi—v, for i 20. (19)

v=l

Set X(z) = i x;z¢. Using the expressions for B(z) and equations (19), it follows that
i=0

X(2)[2 - A(2)] = x0[2B(2) ~ A(2)] = ~xo D' D(2)A(2), (20)

s0 that the generating function, X(z), is completely detenmined by the vector x.

To motivate the discussion, we note that xq;, 15j<m, is the stationary probability that a departure
leaves the system empty with the arrival process in state j. Equivalently, it is the inverse of the expected
number of transitions, between successive visits to the state (0,j), in the Markov chain embedded at
departures. The latter quantity is derived from the first passage time distributions for successive returns to
the set {(0,1),...,(0,m)}. If we define the level i to be the set of states {(i,1),...,(i,m)}, { 20, then from
the structure of the matrix P in (18) it is clear that, in order to reach level 0 from level i, i21, each level
in between must be visited, i.e., the process is skip-free to the left. Moreover, the chance mechanism
goveming the first passage from level i +1 to level i is the same for all levels with i 2 0, because of the
spatial homogeneity of the Markov chain. Therefore, the first passage time distributions from level i +1 to
level £, {20, play a crucial role in the study of the return time distributions of the level 0.

First Passage Times from Level { +1 to Level i.

Define G i’ [r](k;x), k=1, x 20, as the probability that the first passage from the state (i +r, j) to the
state ({,j°),i21,1<j, j" €£m, r21, occurs in exactly k transitions and no later than time x, and
that (i,j) is the first state visited in level i. é[r](k;x) is the matrix with elements G i [r](k;x).

By a first passage argument, it can be shown [27] that the joint transform matrix G(z,s), defined by

G(z,s) = 3 | e%dG" (kix)z%,  for lzl<1, Re s 20,

k=1

€ Cy, §

satisfies the nonlinear matrix equation

G(z.5) =2 3 Ay(5)GV(2.5). @

v=0
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In the context of the BMAP/G/1 queue, G(z,s) governs the number served during, and the duration of,
the busy period. It can be shown that the joint transform matrix governing the number served during and
the duration of a busy period starting with r customers, is given by G’ (z,5). Equation (21) is the key
equation in the matrix analytic solution to queues of the M/G/1 paradigm. It is the matrix analogue of
Takdcs’ equation for the busy period in the ordinary M/G/1 queue [28]. We also define the matrices

GQ) = G(z,0) = 23 A,G' (@),

v=0

G=0G()= 3 AG. 22)

v=0

The matrix G is stochastic when p < 1. For p < 1, the invariant probability vector g, of the positive
stochastic matrix G, satisfies

gG =g, ge =1 (23}

The vector | 15 defined by

and its j-th component, 1 £j<m, is the expected number of transitions (i.e., services) from a state (i +1,)
to level i. By differentiating in (21) we may derive the explicit expression

B=(-G+eg)lI-A+(e—-g)B] le. (24)
The equality gt = (1—-p)~ ! holds.

Computation of the Vector x

The quantity (xq j)" is, by a classical property of Markov chains, the mean recurrence time of the
state (0,/) in the Markov chain P. If we now consider the chain P only at its visits to the level 0, and
record the indices of the states visited as well as the number of transitions in P between consecutive visits
to 0, we obtain an irreducible m-state Markov renewal process with transition matrix determined by the
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matrix generating function K(z). The matrix K(z) is obtained as follows. Define the quantities
K i (kix), k21, x20, 1,7 <m, as the conditional probability that the Markov renewal process, starting
in the state {0, ), returns to the set O for the first time in exactly k transitions and no later than time x, by
hitting the state (0,7"). The joint transform matrix of K (k:x) = { K i (k;x) /, 1s defined by

Kzs) = 3 [e®dK(nzt,  for |zl <1, Re(s) 20.
k=10

A first passage argument shows that K(z,s) satisfies

K(z,5) = 2 3 By(5)G"(z,5).

v=0

As before, we define the matrices

K@) = K@z0) =z 3 B,G'(2),

v=0

K=K(I)=K(1,0) = ¥ B,G".

v=0
Using (16), it can be shown that
K(z,5) = [sI-Dg] "' [DIG(z.5)]-Do]l, (25)
where
DIG(z,5)] = EOD,-Gf(z,s),
J= .
so that
= —Dg! [DIG]-Dy] = I-Dg' D[G). (26)

Remark: The matrix D[{G] has a simple interpretation. Consider the arrival process at a time epoch
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during an idle period and let its phase at that time be i. During the next infinitesimal time interval, the
arrival process may remain in the phase [ or could change state to k¥ without an arrival with probability
(Dg)idt, or a batch arrival of size { may occur and the phase may change to j with probability (D));;dr.
That arriving batch initiates a busy period which ends in the phase & with conditional probability (G') jk-
If we “‘excise’’ the time interval corresponding to the busy period, we obtain an ‘‘instantaneous’
transition from ¢ to k, whose elementary probability is given by ( 3, ;":] D, G') ;. dt. The matrix D[G] may
therefore be considered as the infinitesimal generator of a Markov process, obtained by excising the busy
pericds.

By arguments classical in the theory of Markov renewal processes ([29], [30]) it can be shown [20]
that xq can be expressed in terms of the invariant probability vector ¥ of K, which satisfies
xK = x, xe = 1, and the vector x* = K{1)(1)e, of the row-sum means of K(z).

Specifically, we have

X = — @7

where X * is obtained explicitly by differentiating in (25) as

d
* = &
K Z K(z,0) e
z=1
= -D5* [D-DIG+dg|[1-a+(c-prg] e (28)
Moments of the Quene Length at Departures
Recall from (20) that

X(2)[d - A(2)] = ~x0Dg' D(2)A(2). (29)

Setting z=1 in (29), adding X (1) em to both sides and observing that 7 — A + et is nonsingular, leads to
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X(1) = + —xoD5! DA -A+em) L. (30)

The factorial moment vectors of the queue length at departures are given by the quantities X (1) and
can be computed recursively by differentiation in (29). We present below, the final expressions for the
first two moments. See [20] for the derivations.

Define U(z) = —xoD5' D(z)A(z) and write the derivatives X =X®¥(1), U¥=U"(1) and
AW=AM(1) fori>1,and let X =X(1). We then get

XD = (xWeym + UL - X[T-ADI}I-A+en) !, (31)
XWe = ﬁ{mme + UPe + 2/UD-X[7-AM])(I-A -i-en)'lﬁ}: (32)

and
XPe = -3-(—1175{3)10)14(2)‘: + XA® e + UPg (33)

+ 3{UD + XAD — 2xD1-ADp(I-A +eu)'*ﬁ}.

3.3 The Stationary Queue Length Distribution at Time ¢

In this section, a relationship between the stationary queue length density at an arbitrary time ¢ to the
stationary queue iength at departures is given. This is accomplished by a classical argument based on the
Key Renewal Theorem for Markov renewal processes ({291,{30]), and the details of the proof can be
found in [2] or [20].

Let &(r) denote the queue length and J{¢) be the phase of the arrival process at time 7. We now
consider the continuous parameter process {[£(t), J(2)]1, 20/. The time-dependent joint distribution of
the queue length and the arrival phase is given by the conditional probabilities

Y(k,j;t) = PIE()=k,J(t)=j | Eg=ko.Jo=jo ),
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fork>20,1<j<m, t20. Wecan show that the lirnits

yi = lim Y(k,jit) , fork20,1<j<m,

{—oo

exist and are simply related to the components of the invariant vector x. For k20 let
Yi = (¥r1:Y42+ - - - » Yim ). The vector yg is given by

yo = A7 lxoDgl, (34)

and ype = 1—-p, as expected. The generating function, ¥(z) = Yy ;7' is related to the generating
i=0

function X(z) by the equality

Y(2)D(z) = MM z-1)X(z), for lzl<«1, (35)

¥(1) =

By comparing the coefficients of z* in (35), we see that the vectors y; are related to the vectors x; by:

Yie1 = [,E)’jDHl—j = MM x~xie )| (=051, for i20. (36)
0

Moments of the Queue Length at an Arbitrary Time

Expressions for the moments of the queue length at an arbitrary time can be obtained by
differentiation in (37). We illustrate for the first two moments of the queue length, given by YO (e
and Y(Z)(l)e, respectively, Writing the derivatives as Y(i)=Y(i)(l) and D(i)=D(i)(1), fori>1, we
have

YWD =" lx - ap®, (37)
Y@ p =27 1x® —- yO pW] — 2D, (38)
Y®D = 37 1x@ — y@pth _ yM pDy _ gp®, (39)
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Adding ¥ e to both sides of (37) and observing that ef+D is nonsingular, we obtain
YD = (¥ ey + [A7'X - aDPY(en+D)L. (40)
Postmultiplying by e in (38) yields
YD DM = A1 xMe - %ane. | (41)

Postmultiplying (40) by D! ¢ and substituting (41) leads to

1

YWe = XxDe - 51;1:1_)(% + MDD —X)(en+D) 1DWe. (42)
Similar manipulations lead to
YPe=XPe - My pPe %M xD® e (43)

- 2[x® - A YD DD — W aDP(em+D) 1DWe,

where X(1), X', and X(? ¢, are given by (30), (31) and (33), respectively.

The generating function for the queue length at (batch) arrival epochs is given by
ATy (o) E;“: Die = —A1 "1 ¥(z) Dge, so that the calculation of moments for that distribution is again
routine.

3.4 The Virtual Waiting Time Distribution

In this section, we state results for the virtual waiting time distribution. First, we define the following

quantities

ﬁ’(x) = f ﬁ/, (x), -, ﬁ/m (x)}, where ﬁ/j (x} is the joint probability that at an arbitrary time the
arrival process is in phase j and that a virtual customer who arrives at that time waits at
most a time x before entering service,
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wo{x) = ﬁf'(x) ¢, the virtual waiting time distribution,
Also for use in what follows, we will need the Laplace-Stieltjes transforms

Wo(s) = | e dW(x), wo(s) = W,(s)e.
0

Ramaswami {2], has shown that the Laplace-Stieltjes transform W, (s) satisfies

W,(s) = syolsI+D(H(s)1"}, (44)
W) = =,
from which it follows that
wy(s) = syo[sI+D(H(s))] 'e. (45)

Remark: Although the analytic derivation of (44) is somewhat involved (based again on the Key
Renewal Theorem for Markov renewal processes) the final results, (44) and (45}, are quite elegant. Note
that they are a direct generalization of the classical Pollaczek-Khinchin formula for the waiting time in the
M/G/1 queue. In particular, if Dy=—A and D, =A then the BMAP is a Poisson process of rate A,
yo=1-p, and (45) reduces to the familiar form,

s(1=p)

wels) = TG

Moments of the Virtual Waiting Time Distribution

We now derive expressions for the first two moments of the virtual waiting time distribution. These
expressions are in a simpler form than those in [2] and although they appear quite complicated they are
easily implemented for numerical computation. We begin with Equation (44) written as

sw(s) + w(s)D(H(s)) = sy,. {46)

To simplify the notation and to aid in the numerical implementation of the formulas, we define
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V(s)=D(H(s)), and write w® = w'?(0), v®) = vD(0) for i 21, and let p; be the i-th moment of
H (-) (if it exists). Then by successively differentiating V{(s) we get

v = _,p"lD(i)
Ve = u?p® + py 0P

v3) = _(u’l)SD(B) — 3u’luaD(2) — uéD(l)

We note that £D e = A1~1. We also define v/ = V7 ¢, Now, by successively differentiating in (46)
we obtain, after some laborious algebra,

1
—wle = ———— - gy -1 4
w''e 21-p) |:2p + 2(yg — ®EV'' Y em+D) "vy + nvz}, (47

wl) = (weyn — x + (yg — =V )(ern+D)™ !,

wPe = 3(11—[)) [3(2w(1) + 2w v 4 gv@Dyem+D)~ v, (48)

- 3W(1) vy — TEV3:|.

The first two moments of the virtual waiting time are thus given by (47) and (48), respectively. For
example, we see that for the M X/G/1 queue with arrival rate A and batch size generating function p(z),
D(z)=—A+Ap(z) so that (47) reduces to

ALY PP 1) + puap ()]
2(1-p) )

E(W) =

We also note that the moments of the waiting time seen by an arrival may be obtained in terms of the
vectors w'™. For example, the mean waiting time of the first customer in a batch at an arrival epoch is

—(nd)"'w d, etc. For single arrivals this is the actual waiting time. The actual waiting time for an
arbitrary customer with batch arrivals is more complicated and will be reported elsewhere.
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3.5 The Classical Algorithm

The outiine of the analysis in the previous sections also serves as a recipe for the implementation of a
computational algorithm. Indeed, one of the major benefits of the matrix-analytic approach to the
solution of stochastic models is that intermediate quantities which arise in the analytic derivation are also
needed in the numerical procedure and, due to the fact that they are derived using probabilistic arguments,
they are already in a form which is suitable for numerical evaluation. That is, they often involve
arithmetic operations on only nonnegative quantities, thus avoiding common sources of round-off error.
Moreover, many times the obvious procedures for solving the required nonlinear matrix equations can be
shown to produce monotonically increasing estimates of the unique solution so that the algorithms
themselves are inherently stable. Such is the case for the current model, as it was developed in [2] and
summarized more recently in [20]. One practical problem with the approaches there (besides the more
complicated notation) is that the algorithms, in their complete generality, require formidable resources in
both CPU time as well as storage. To give some indication of the computational complexities we briefly
outline the general numerical procedure. Since this description is not meant to be implemented as a
specific algorithm, it will be informal.

We first assume that the service time distribution, H (), and the sequence {D;: jz0} which specifies
the arrival process, are given. Some quantities such as

D1y = ¥ jD;,
j=1

may be explicitly available depending on the formulation of the problem. If they are not, then they must
be numerically computed. We assume that all such setup computations have been completed.

Step 1: Computration of the matrices A,. For a general service time distribution, H(-), the matrices A,
defined in (11) need to be numerically integrated. This is quite delicate since the matrices P(n,?),
n20, 120, are themselves computed by numerically integrating the infinite system of differential-
difference equations (6). Neuts discusses in {23] a procedure which adaptively truncates (6) at both upper
and lower indices as ¢ increases. Since the A,’s are the starting point for a long series of numerical
computations, they need to be computed to a high degree of accuracy and it is clear that the more
accuracy required for the matrices A ,, the finer the mesh is required for solving the differential equations.
Also, for each n, the matrix A, requires m? numerical integrations. Once the sequence {A,: 0<n <M},
for a suitably chosen truncation index M, is computed, these matrices need to be stored. Guidelines for
choosing the truncation index, M, are given in [23]. Now the matrix A, defined in (14), is computed by
summation of the sequence {A,}. This can be compared with a direct numerical integration in (14) as a
check on the accuracy of computations so far. The sequence {A,} can also be normalized in an
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appropriate way to ensure that its sum is stochastic.

Step 2: Computation of the matrix G. The obvious numerical procedure for computing the matrix G is by
successive substitution in Equation (22), starting with G =0. It has been shown that this produces a
sequence of nonnegative matrices which increases monotonically to the unique solution of (22). As the
traffic intensity, p, gets moderate to large, however, the convergence gets slower. A slightly faster
convergence can be obtained in the following modification,

Gie1 = Y U~A) 1A (G,
n=0
n#l

starting with Go=0. It was pointed out in [20] that the speed of convergence can be enhanced even
further in some cases by starting the iteration with a stochastic matrix. The estimating sequence no longer
possesses the monotonicity property but each iterate is itself stochastic and we have had satisfactory
experience with this approach. In either case, the above (truncated) sum is computed by Homer’s method.

Applying the matrix version of Newton’s method, (see, e.g., [31]), to (22) results in many fewer
iterations being required but a large system of linear equations needs to be solved at each iteration. This
is discussed in [32] where an acceleration method based on a first order approximation to Newton’s
method is proposed. Experience with this approach has shown that in some cases the CPU requirement
may be reduced by 50-70 percent.

Once G is computed to the desired accuracy, the stationary probability vector, g, is computed by
standard methods.

Step 3: Computation of the vector B. The vector B, defined in (15) is evaluated in the obvious manner.

Step 4: Computation of the vector i. The system of linear equations
[{-A+(e-g)Blu = e,

is solved for u. Then 0 = (I -G +eg)u, as seen from (24). At this point, the identity gp = (1- p)"l,
is verified with the computed estimates of g and p. This serves as a powerful accuracy check on the
numerical computations so far. Such accuracy checks are useful by-products of the matrix-analytic
approach.

Step 5: Computation of the matrix D[ G]. The matrix
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DIG] = $D,G,

i=0

is computed using Homer’s algorithm.

Step 6: Computation of K and ¥. The matrix K, given by (26), is computed directly. Its stationary
probability vector, K, is then computed by standard methods.

Step 7: The vector xy. The vector X * is computed from (28) using the vector u from Step 4. x; is now
obtained from (27).

Step 8: Moments of the queue length at departures. The first two moments of the queue length
distribution at departures, X*) (1) e, and X® (1) e, are given explicitly in terms of x4 by Equations (32)
and (33), respectively.

Step 9: The vector yy. Once the vector x is obtained, y is computed by (34).

Step 10: Moments of the queue length at an arbitrary time. Y (1)e and Y? (1) e are computed from
(42) and (43), respectively.

Step 11: Moments of the virtual waiting time distribution. The first two moments of the virtual waiting
time are given explicitly in terms of yg by (47) and (48), respectively.

Step 12: The distributions of the gueue length at departures. Equation (19) can be solved for x; ., to get
a recursion for x;,; in terms of x;, 0<j<i. Unfortunately, this recursion suffers from *‘catastrophic
cancellation’’[33] which results from subtracting small quantities of the same order. An alternative for
solving (19} is to rewrite it in a form which is directly suitable for a block Gauss-Seidel iterative
procedure (see e.g., [6] and [20]). Although this method was implemented in [6] and it was seen to be a
numerically stable algorithm, the Gauss-Seidel procedure suffers from slow convergence, especially for
high traffic intensities. The following procedure, obtained in [34], constitutes a major breakthrough in the
efficient computation of the sequence {x,}. It is the natural extension to the matrix case of a simple
device, due to P. J. Burke, to avoid loss of significance in similar computations for the M/G/1 queue.

Given the vector x, the vectors x;, for i21, are recursively obtained from the formuia

_ -1 _ -
x; = l:xoBi + ExinH—j}U“AO-I, 21, (49)
j=1

where
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By= 3 B:G'™, and A, = 3 A;G'™Y, vz0.
i=v _

i=v

Note that all quantities in this recursion are nonnegative, thus avoiding the catastrophic cancellation
suffered by other recursions. Further, as observed in [34], the implementation of (49) can be done
efficiently by noting that as i—es, B;, A;—0. One may therefore choose a large index i, (e.g., { can be
c-:_hoscn so that Z;’;H | Bre and ¥ 7 . = Aie have negligibly small components), and set B; and
A; = 0. The other required matrices are computed by implementing the backward recursions

Ek = B, +Ek+le and EkxAk+Zk+]G; for k=i-1,i-2,---,0.

Note that the matrices A, and B, k20, still need to be computed.

Step 13: The distributions of the queue length at an arbitrary time. The sequence, {y;, k=1}, is
computed recursively from (36) in terms of the sequence {x,].

Step 14: The distribution of the virtual waiting time. There are several methods for computing the
distribution of the virtual waiting time distribution. The first is by numerical inversion of the Laplace-
Stieltjes transform as given by (45). The method presented in [35] has been used successfully for
inverting similar transforms. Another useful transform inversion technique is given in [36]. An
alternative method is to convert (44) into the equivalent Volterra integral equation

W(x) = W) + [Ww)O(x-u)du, x20,
0

where

&) = - 30,8% ),
k=0

(see, e.g., [37] and [20].) There are standard methods for the numerical solution of Volterra-type
equations, see, e.g., [38] and [39].

The above algorithm has been implemented successfully for several special cases of the BMAP/G/1
queue [6]. It is clear that implementation of the algorithm in its full generality is a major task. Also, if
accomplished, it would present a major burden on both CPU resources and memory requirements. In the
next section, we present some new results which will eliminate the need for most of the computations and
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storage requirements in the above algorithm.

4. NEW RESULTS FOR THE BMAP/G/1 QUEUE AND THEIR IMPLICATIONS

A recent result of Sengupta [40] shows that the solution of the nonlinear matrix equation arising in the
GI/PH/1 queue has a matrix exponential form. It was immediately apparent that the solution to the
corresponding equation, (22), for the PH/G/1 queue also had a matrix exponential form. This was
proved, using a probabilistic argument, for the MMPP/G/1 queue by Neuts [16] and was extended to the
MAP/G/1 queue in [7]. The result for the PH/G/1 queue was proved in [41] by using a duality result
between the GI/PH/1 and PH/G/1 queues. This exponential representation leads to several explicit
formulae which reduce substantially the computations involved in the algorithmic solutions of these
models. We now extend this resuit to the BMAP/G/1 queue and discuss the specific simplifications that
occur in the algorithm.

4.1 The Matrix G(z,s)

By adapting methodology developed in [40], we generalize the proof given in [16], for the
MMPP/G/1 queue, to prove the following key result for the BMAP/G/1 queue.

Theorem: For the BMAFP/G/1 queue, the matrix G(z,s), satisfying (21), also satisfies the equation

G(z,5) = z]e ¥ ePIO@NigR(x), (50)
0
which readily implies that
G = [ePOgh(x). (51)
0

Remark: Since D{G] is the infinitesimal generator of an irreducible Markov process, exp(D[G]x) is
strictly positive for x >0, and (51) implies that G is strictly positive.

Proof: As in [16], we consider the continuous parameter process {(J(t),R(#)), t 20}, where J(r) is the
phase of the arrival process and R(z) is the residual busy period at time ¢ (or equivalently, the virtual
waiting time or amount of work in the system at time t). When, at time ¢, the queue is empty, we set
R(#)=0. Next, we introduce the conditional probability ¥ ;;(x;k,y) that, given J(0)=i, 1<i <m, and
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R(0)=x, x>0, the (current) busy period ends before time y, y 2x, with the armrival process in phase j and
involves a service of £, k 20, new customers. The mxm matrix W (x;k,y) has elements ¥ ;(x;k,y) and

we define the transform ¥ *(x;z,s) by

¥ *(x;2,8) = f} Jea, ¥ sk, -,
k=0x

It was shown in [16] that
Y (xy+x5:2,8) = W*(xq:z2,5) ¥ *(xp:2,5), for x;>0, x,>0, (52)

and by continuity, we set ¥ *(0;z,5) = I

The busy period starting with n customers is governed by the matrix G”(z,s). By conditioning on the
total service time of those first n customers, we have

G (z,5) = 2" | WH(yiz,5)dH ™ (y), (53)
0

where H ) {+) denotes the n-fold convolution of H (-). We also have

D{,X

P(x;0,y) = {¢ - ¥
0, 0sy<x,

andfork=1,

PR y=x Y
W(xky) = 3 | du [ ePD;W(x—u+vik—j,y—uydd” (v).
j=10 0

(u) (v}

Taking transforms leads to
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x e y-x
- - _ bl . ~{§}
WH(x;z,5) = e TTPOx J duj e _[ eD"xszz“P(x——u+v;z,y—u)dHU ()
¢ X 0 j=1
(u) (») ()

X o o i
+ J dwj j g~ Su~wtx) pDolx=mw) ZDjzj‘I’(w+v;z,u)dH{J)(v)
0 0 w+v j=1
(w) v} (u)

-(s/-D
e (s 0)x

X
= P o J ¢~ Dolx=w) EDjGj(z,s)‘P*(w;z,s)dw
0 i=1

1-D . _ .
s 0% and differentiating with respect to x ieads to

%‘P*(x;z,S) = —=(sI -D[G(z,5)]) ¥ *(x;z,5),

with the initial condition ¥ *(0;z,s)=1, which implies

Y¥(x;z,8) = e~ (sI-DIGzDx

which proves the theorem. g

Corollary:
1. The matrix &G commutes with the matrix D[ G].
2. The vector g, defined in (23), is also the stationary probability vector of the infinitesimal generator
D[G].
3. The vector — gDy is a left eigenvector of the matrix K defined in (26).
4. The vectors xg and y are given explicitly in terms of g as

AM(1-p)g(=Dg), (34)

Xo

yo = (1-p)g. (55)
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5. The Laplace-Stieltjes transform, W, (s), satisfies
W, (s) = s(1-p)glsl+D(H(s)]™} (36)
from which it follows that
wy(s) = s(1-p)glsI+D(H(s))] 'e. (57

Proof: From the representation of G in (51), it is clear that it commutes with D[G]. For the second part
of the corollary, let w be a stationary vector of the infinitesimal generator D[G]. That is, w satisfies
wD[G] = 0, we = 1. From (51), it is clear that, w is a stationary vector of G. The result follows
from the uniqueness of g. That — gD, is a left eigenvector of X is seen from the expression for K given in
(26). Therefore, (27) implies that xo=—cgDg for some constant ¢. Equation (34) then yields that
yo=cAi ! g and since ype=1-p, we have c=A](1—p). This proves parts 3 and 4. Part 5 is obtained
by substitution into (44} and (45).g

5. A NEW ALGORITHM FOR THE BMAP/G/1 QUEUE

A major consequence of the preceding results is the explicit formulas for x4 and yg in terms of the
vector g. In particular, once g is computed the moments of the queue length and virtual waiting time
distributions can be immediately computed from Equations (31-33), (42-43), and (47-48). Thus, many of
the intermediate steps in the classical algorithm are avoided.

A further consequence of (51) is an efficient algorithm for computing the matrix G. The basic idea is
to use the concept of uniformization. Basically, this says that if Q is the infinitesimal generator of a
continuous time Markov process, then

e = eer(L—I) - e-e:eerL

= i e-—-et (et)n Ln, (58)

|
n=0 nl

where 6=max(-Q;), and L=1+96" 1 0 is a stochastic matrix. If we have a Poisson process of rate 6 and

at each Poisson epoch we make a transition in the discrete time Markov chain with transition probability
matrix L, then this process is equivalent to the original Markov process with generator Q. The Poisson
process with rate 6 is called the uniformizing Poisson process for the Markov process with generator Q.
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The utility of (58) is that the summation there involves only nonnegative elements and thus serves as a
practical method for numerically evaluating the matrix exponential e &

Using this in (51) leads to

G= ¥ v,(I+87'DIG])", (59)

n=0

-] n -
where y, = Ie‘e" -(-93-12—-—dH (x), for n=0. Thus, G can be computed by successively iterating in the
0 n!

following recursion,

Hys16 = I+ 87'DIGL)}1Hny n=0,1,2,.., (60)

Grs1

E Yan,k. (61)
n=0

where Ho; = Iand © = max{(—Dg);;J. If we start with G¢=0, it can be shown that the successive
]

values of G are monotonically increasing to the unique solution, however, the convergence can be slow
especially for high values of p. We have found that by starting with a stochastic matrix leads to
extremely fast convergence that appears to be independent of p. Therefore we recommend that the
iteration be started with Gy = ex, ie., a matrix with each row equal to %. The matrix D[G,] is
computed in each iteration using Horner’s method. Let N be the truncation index on the sequence {D,}.
Then Horner’s method carries out the matrix operations according to the following scheme

YQ = Dy, YJ = DN-j + Yj_]Gk, for ISJSN

Clearly, Yy = Y, ;V__“ oD JGJ,C An alternative to evaluating (59) by the iteration in (60) and (61) is to
evaluate the polynomial in (59) by Horner’s method. The method proposed in [42], for evaluating matrix
polynomials, which requires fewer matrix multiplications than Horner’s method, can also be used. The

possible disadvantage with these approaches is that they compute the sum, Ei _ Oy,,H n» Where k is the
truncation index of the sequence {Yy,}, whereas (61) evaluates the sum term by term and thus the
summation can be stopped when the successive terms get small. In general, all k terms need not be

computed.

Note that this algorithm for computing G does not require the numerical evaluation and storage of the
matrices A ,, defined in (11). When only the waiting time distribution or the moments of the queue length
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are needed, then computation of the matrix G is sufficient.

We also point out that (51) can be used to derive other algorithms for computing G. In general, we
prefer (60) and (61) since only the scalar sequence {Yy, } needs to be computed via numerical integrations,
however, in some cases other methods might be preferred. For example, if the service time distribution is
a mixture of two deterministic distributions, i.e., the service time equals 4, with probability p, and d,
with probability p,, then from (51) we see that G satisfies

D[G)d,

G=pe + pzeD[G]dz. ‘ (62)

In this case, any routine which efficiently computes the matrix exponential can be used for the iteration
implied by (62). See {43] for many alternative algorithms for computing matrix exponentials.

In (60) and (61), we have presented a new scheme for computing the matrix G. As a consequence of
the Corollary in Section 4, we see that once G is computed, then as far as computing the moments of the
queue length and waiting time distributions, we are essentially done. That is, given G, we compute g by
standard methods and the moments are given explicitly by (31-33), (42-43) and (47-48). This constitutes
a major reduction in the computational effort compared to the classical algorithm of Section 3. The
waiting time distribution can also be obtained by inverting the transform in (57) or by solving the
equivalent Volterra integral equation.

The equations for the moments .of the queue length involve the moment matrices
A¥(1), i=0,1,2,3. These can be derived in a manner suitable for computation as follows. Define
V, (¢) to be the nth factorial moment matrix of the sequence {P(k,1): k 20}, i.e,

Vo) = 3 —%

k=n

mp(k,t)

dﬂ

Zﬂ

P*(z,1)

z=1

Differentiating »n times with respect to z in (7) and setting z =1 leads to

) nogn )
Vi) = 'Eo(j)vj(:)r_)("-ﬂ. (63)
J:
where D) = d” D(z) = i k! Dy, n20. Now,
2" & G—n)

z=1
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AOy = [vinydH(),  for i20.
0

Writing the summation in (63) as a matrix product, using uniformization as in (59), and writing AW for
A®(1), we compute these simultaneously as the concatenated matrix

I:A’A(l) ’A(2) ,A(3):| = i 'Yan
n=0

oo n .
where ¥, = je'a"i%f—')—dH(x), for n20, 6 = max(-Dy), Lo is the mx4m matrix {/,0,0,0], and
1] . I

Lisi = Ly(J+6718), k>0, where

DD(I) D(Z) D(3)
0 D 2DW 3p@
o 0 b 3D
0 0 0 D

S =

If the quene length distributions are needed then some additional work is required. In particular, the
recursion in (49) requires the computation of the matrices A, and B, k20. By repeating the
uniformization arguments of , we can write P(n,t), defined in (6) as

o e i ;
P(n,1) =;§68 or (81)° J.t,) K. (64)

where 9=m§1X[(—Do)ﬁf and {K,,'} is defined recursively by K{® =1, K© =0, n21, and

(j+1} j
Ko = Ko (14067 Dy) (©3)
uey A e i
Kn =07 T KD, + K (1467 D). (0
i=

Substituting (64) into (11) leads to the following expression for A ,.



-3 -

A, = YK (67)
j=0

This representation along with the recursion (65-66) leads to an efficient algorithm for computing the
A,’s. This algorithm does not require the computation of the matrices P(#n,t) and oniy involves the
numerical integration of the scalar quantities y;, j20. Of course, for many service time distributions,
numerical integrations may be avoided altogether.

Once a sufficient number of A, matrices are computed, the sequence {B,, n 20} 1s obtained directly
from (17). We refer to the various truncation rules in [23] and [20] to determine how many matrices are
required. Now the queue length densities can be computed using (49) and (36).

6. SOME SELECTED SPECIAL CASES

In this section we point out some simplifications in the algorithms which arise in queues without
batch arrivals or when m =2..

The MAP/G/1 Queue

For the MAP/G/1 queue, all arrivals are single (i.e., no batch arrivals), so that in this case
D(z) = Dy-+zD,. This results in several simplifications in the preceding equations. For instance,
7&’1_1 =1D, e,

DWWy =p,, and DWQA) =0, for n21,
B, = -D3'DA,, for n20,
Yis1 = ¥:iD1 + A7V (xi~x;4) D57,

etc. The algorithm for computing G for the MAP/G/1 queue is given by (60} and (61) where now
D[G] = Dy + D1G,. Such simplifications should be exploited in an implementation of the
algorithms if only arrival streams without batch arrivals are being studied.

The PH/G/1 Queue

Since the PH renewal process is a special case of the MAP, the results for the MAP/G/1 queue hold.



-32-

In particular, if the interarrival time distribution is of phase type with representation (o, T), then
D(z) = T + zT°a, where T° = —Te. Equation (51), for G, is then given by

-

G = [eT+*T D4R (x), (68)
0

We see that if the vector @G is specified, then by substituting this into the right hand side of Equation
(68), the matrix G is completely determined. This suggests that we might try to compute oG directly.
With this in mind, let u = G. From (68) we then have

u = |ae T T dH(x). (69)

O ey §

Using uniformization, as in (59), we can write u as

u= ¥ y,a(+0- (T+T0u))". (70)
n=0

Thus, u can be computed by successively iterating on

u= 3 Vohn an
n=0
and
ho =4qa
Bopep = hy(J+07 (T +Tu)) (72)

Now, for the PH/G/1 queue, it can be shown that g = (aGT'] e)‘1 aGT™! (See e.g., [441). Therefore,
if we then solve the linear system vT =u, for v, g is given by

v

g = .
ve



-33-

Once g is computed, the moments of the queue length and waiting time distributions are readily
obtained from the results in the preceding sections. If the matrix G is needed, for computing the queue
length distribution for instance, it is obtained directly from

G= 3 y,(+6" (T+T°w)". 73)

n=0

The implementation of the vector recursion (71-72) results in a substantial computational savings over the
matrix recursion (60-61). We also note that this simplified algorithm for the PH/G/1 queue was obtained
independently in [45].

Using the fact the for the PH/G/1 queue, t=-A]"!aT™!, we can reduce the recursion for the
stationary probabilities at an arbitrary time, given in (34) and (36), to

yo = =A7lxoT! (74)

Yist = xje® + A7 x—x; 1770, 020,

The GI/PH/1 Queue.

We note that analogous results carry through for the nonlinear equation from the GI/PH/1 quene. In
particui.r, if the interarrival time distribution is given by F(+), and the service time distribution is of
phase type with representation (B, ), then the matrix R which is central to the matrix geometric solution
of that model, (see, e.g., [23]), is shown in [40] to satisfy

R = [eC+RSBIgR(x), 5
0
where §¢ = —Se. Using the same reasoning as above we define the vector v = RS? which satisfies
v = |STBxso4F(x). (76)
0

An algorithm analogous to (71-72) can now be specified which is an improvement over both the
algorithm proposed in [40] and that in [46].
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Simplifications Resulting from a 2-State Arrival Process

The major computational effort in the algorithm is in computing the matrix G which satisfies (51).
The algorithm presented in (59) is an efficient numerical procedure for reducing the number of numerical
integrations and for computing the matrix exponential appearing in (51). In the 2-state case, a substantial
savings results since we can write an explicit expression for the matrix exponential appearing in (51).
Also, in the 2-state case, the matrix G has only two unknown elements, since it is stochastic. We are thus
able to derive 2 scalar recursions for these unknown elements. This will lead to an extremely efficient
algorithm for computing G. We present below some particularly useful special cases.

The 2-state MAP/G/1 Queue

We write the matrices Dy and D as

by = [—(a+b+c) a } wd Dy = [b c],
d —(d+e+f) e f

where (a,b,c.d,e,f) 2 0 and without loss of generality, we assume b 2 f. Now for a generator S given

by
-5 s
S=[ 0 0}’
1 —3)

we have

. 1 sl+soe—(so+51)x SO_Soe—(So+51)x -
e = .
Sgt+5 sl_sle—(soﬂ'])x SO+SI€—(50+sl)x
If we write G as
1-Gy Go
G = , 78
G, 1-G,

then the off-diagonal elements of (51) lead to the equations
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_ (a+bGg+c(1=G )1 -H(a+bGo+c(1-G)+d+e(1-Go)+fG))]

o (79)
a+bGo+c(1-G)+d+e(1-Gy)+fG,

G - (d+e(1-G)+fG1-H(a+bGg+c(1-G)+d+e(1-Go)+fG)) £
b a+bGo+c(1-G)+d +e(1-Gy)+fG, ’ (50

where H(-) is the LST of H (). Addi_ng these two equations yields

Gop+ Gy =1-H(a+bGy+c(1-G)+d+e(1 -Gy)+fGy). (81)
The commutativity of G and Dy + D ; G implies the relationship

aG+bGyG1+c(1-G )G = dGo+e(1-G)Go+fGoG;. (82)

These equations can be written in the following form which is suitable for iteration starting with
GO = Gl = 0,

Gog =1 -Gy — Ha+bGo+c(1-G)+d+e(1-Gy)+fG,), (83)

G - dGg+e(1-Gg)Go+cGT )
b= a+c+{b—f)Gy

This algorithm avoids computation of the sequence {,}.and thus no numerical integrations are required.
Evaluation of the matrix polynomial in (59) is also avoided. Our computational experience with this
algorithm has shown it to be extremely fast and efficient.

The E5/G/1 quene

The solution to the E,/G/1 queue is particularly simple. The PH-representation for £, is (@, T)
where ¢ = (1,0) and

Equation (83) implies that
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_ 1-H(M2-Gy))
0= 2-Gy ’

and using (84), we see that G can be written as

G___li X 1-x :l’
x(1-x) 1-x(1—x)

and the vector g = (x(1 +x)"}, (14x)71), where x is the unique solution in (0,1) to

x = HOAx) 2 (85)

The 2-state MMPP/G/1 Queue

For the MMPP/G/1 queue, we have Dy=R—-A, D;=A, and D;=0, j22. Equation (51) for G
reduces to

G = e(R—A+AG)xdEI(x)

© tmnry §

Therefore, for the m-state case, m = 3, the general algorithms for the MAP/G/1 queue apply.

The 2-state case has received attention recently as a simple tractable process which can closely
approximate much more complicated processes and predict queneing delays very accurately. (See, for
instance, [10}, for an application to the performance of packetized voice and data processes concentrated
via a statistical multiplexer.) Equations (83) and (84) reduce to very simple forms in this case. These
lead to an extremely simple and efficient algorithm for this model. To this end, we write

~ Ao O ' 1-Gy G
R = Fo To ) A = o ) and G = 0 0 ,
r{y —n 0 ll Gl l—Gl

and assume, without loss of generality, Ag2A ;. Equation (83) reduces to
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GO + Gl =1 - H(r0+r1+7\.0G0 “+ XIGI)?

and Equation (84) reduces to

Go(ri+A1G) = G (rg+AoGy).

Solving for G in this equation implies that G can be written as

1-x x
G = ,
rpx 1 rmx
7‘0+(7Lg"ll)x r0+(7u0—?»1)x
where x satisfies
rix Arix
x=1—- ! —Hr0+r1+7k.0x+ 171

r0+(7\.0—7~.1)x r0+(?k.0—?\,1)x .

(86)

87

(88)

(89)

In many cases, the quantity x may be obtained by successive substitution in (89) starting with x=0. Our
experience with this iteration shows it to be extrerely fast and, unlike the analogous matrix iterations, the
speed of convergence is insensitive to p. For instance, an example with p=0.99999 converged to 10
decimal places of accuracy in just 14 iterations. For some parameter ranges, the successive substitution
scheme will oscillate. Whenever oscillation occurred, relabeling the states 0 and 1 so that A, 2A( has
solved this problem in all cases we encountered. In any case, the (unique) solution in (0,1) can be
obtained easily by bisection. Although this is slightly slower, it is guaranteed to converge. in particular,

if we choose A ) 24, then it can be shown that

0<x< min(l,ro(rl +7L-1—‘7Lo)—]).

The vector g is given by

G Go
Go+Gy ’ Go+ G,

g =1(g0,81) =




-38 -

and the LST of the virtual waiting time, given in (45), may be written explicitly as

s(t=p)s—ro—r1+(H(s)—1)(goAr1 +g1A0)]
s2+[(H() =D (Ao+A )~ (ro+ri s +(H(S)-D(H(s)-1) hory—ror~r o] ,

w,(s) =

although for computations, the matrix expression in (45) is more convenient. Once the vector g is
computed, it is now routine to compute the moments of the waiting time and queue length distributions
using the formulas in this paper. In particular, the expressions for the moments of the virtual waiting time
given in (47) and (48), with y, replaced by (1-p)g, are are readily implemented and are preferred to
expressions obtained by differentiating the above explicit equation for w, (s). The iteration (89) is trivial
to program and seems to be the simplest solution to the 2-state MMPP/G/1 queue to date. (Compare this
to the solution in [13].)

7. CONCLUSIONS

The BMAP is a natural generalization of the batch Poisson process and its notation is extremely
simple. It is a wide class of arrival processes and contains as special cases many processes that have been
studied in the literature. We have presented new results for the BMAP/G/1 quene. These results have led
to simplified algorithms for computing many performance measures of interest. The new relationship
(51) for the matrix G which is a key ingredient in the algorithmic solution, may lead to even further
simplified numerical procedures. The algorithms presented here allow for a general implementation of
canned computer programs for solving the general model. Such a program could be used for comparing
vastly different arrival processes entering a single server queue.

A further use of this algorithm is to evaluate the performance of superpositions of renewal processes
entering a queue. If the renewal processes are of phase type then the superposition is a special case of the
BMAP. Although the size of the matrices involved grows geometrically as the number of streams, for two
or three streams the computations are completely feasible. The delay seen by customers in the individual
streams can be derived from the results presented earlier. These exact expressions could be used to
validate various simple approximations that have been proposed in the literature.

Many of the previous analyses of queues with Neuts’ versatile Markovian point process can now be
recast in the new framework of the BMAP representation. This will lead to simplified expressions and
algorithms for these models.
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