banner ad

Attorneys: Intellectual Property Expert Witnesses

Sort Non-Featured Profiles by
Check for SynapsUs
Michael Nranian, JD, MBA, MS
10945 Stoney Point
South Lyon MI 48178
USA
phone: 248-376-0338 or 248-446-4052
Michael_Nranian_photo.jpg
Michael Nranian, JD, MBA, MS has over 30 years experience focusing in Product Development, Intellectual Property, Patent Litigation, Legal and Technical Compliance, and Product Liability Litigation. He is a licensed attorney in Michigan, Texas, & the United States Patent and Trademark Office. Mr. Nranian is a Six Sigma Black Belt, Professional Engineer, & Certified Project Management Professional. He has an in-depth background and education in Law, IP, Electrical, Chemical & Computer Engineering, & Business. He has testified extensively as an expert witness in depositions, hearings, and trials in state & federal courts.

Mr. Nranian conducts Product and Technology Analysis, Patentability & Prior Art Research,and provides Technology & Litigation Support for Intellectual Property. His litigation background includes patent infringement / non-infringement under literal infringement and the doctrine of equivalents, patent validity / invalidity, prior art, & file-wrapper estoppel, for both ITC and Federal cases, including Inter Partes reviews. He conducts analysis of patents and products, prepares claim charts, & expert witness reports. This includes testimony and document preparation for cases before state, and federal court jurisdictions, and the International Trade Commission and the Patent Trial and Appeal Board.

Mr. Nranian is thoroughly familiar with all 101, 102, 103, 112, and other enablement and prior art arguments. His experience includes Technology Standards Boards and Licensing Authorities, Antitrust / DOJ, Technology Development and Transfer, Patents, Trademarks, Trade Secrets, and Copyrights, Licensing, Unfair Competition/Trade, False/Deceptive Advertising, & Lanham Act Actions, & Class Actions.

His Product Liability Expert Witness litigation background includes all types of Safety Systems, Electrical Systems, Fires, Accident Reconstruction, and Evaluation of Alternative Designs for Automotive, Medical and other industries. He has over 29 years of experience in Automotive Safety Systems, Sensors, Seatbelts, Airbags / Curtains, Seats, Diagnostic Systems, Crash Recorders, Crash Pulse Analysis, System Diagnostic, Fault Codes, Structure (including roof-crush and door) and front, side & roll-over systems (including sensing and algorithm development) for domestic and international corporations. He is thoroughly familiar with all regulatory (including FMVSS), and corporate due-care requirements, & preemption arguments, occupant kinematics, & injury causation.
Check for SynapsUs
Michael M. Ahmadshahi, Ph.D, Esq.
Principal
2030 Main Street, Suite 1300
Irvine CA 92614
USA
phone: 949-260-4997
fax: 949-260-4996
Ahmadshahi-Law-Office-Logo.jpg
Michael Ahmadshahi Intellectual Property Expert PhotoMichael M. Ahmadshahi Ph.D., Esq. is among the best and most thorough Intellectual Property attorneys. He has over 20 years of first-hand experience researching, writing, and filing patents. His firm has facilitated over 150 worldwide patents, in the U.S., Canada, Great Britain, Germany, France, Switzerland, Sweden, Belgium, Netherlands, Austria, Spain, Italy, Greece, Turkey, and Australia.

Background Experience - Prior to the practice of law, Mr. Ahmadshahi used his PhD in Mechanical and Aerospace Engineering to serve as staff scientist at C.E. Niehoff & Co., a defense contractor which manufactures state-of-the-art generators for military vehicles. He also served as a Research Engineer with the University of California, San Diego in the areas of Optics and Mechanical Engineering, developing laser-based optical techniques for evaluation of advanced materials under high-impact dynamic loads. He has been granted 3 United States Patents.

Litigation Support - Mr. Ahmadshahi is a member of the State Bar of California, and is admitted to practice before the United States Patent and Trademark Office. He is a member of the American Bar Association, the Orange County Bar Association, and the American Society of Mechanical Engineers among others. Mr. Ahmadshahi has experience in the prosecution of patent applications in the fields of electrical, optical, mechanical, electro-mechanical, opto-electronic devices, circuits, nanotechnology, business methods, and computer programs. His services are available to both plaintiff and defendant.

Areas of Practice:
  • Intellectual Property Law
  • Patents
  • Trademarks
  • Trade Dress
  • Copyright
  • Unfair Business Practices
  • Trade Secret
  • IP Litigation
  • Business Formation
  • IP Portfolio Creation
  • Licensing Agreements
  • Start-Up Challenges
  • View Ahmadshahi Law Offices' Consulting Profile.
    The equations of linear elasticity for rotationally symmetric deformations are expanded using a small parameter related to the thickness to radius of curvature ratio of the shell to obtain the classical thin shell equations of conical shells as a first approximation. These classical equations with variable coefficients permit further asymptotic expansions in the cases of steep as well as shallow cones, yielding systems of equations with constant coefficients. Solutions of these equations are used to compute the influence coefficients relating edge loads and edge displacements.

    5/22/2018 · Applied Mechanics
    The feasibility of two-beam speckle interferometry for the study of time-varying mechanical deformation of diffusely reflecting bodies is demonstrated. A sequence of speckle patterns produced by a vibrating cantilever beam was recorded photographically by means of a high-speed camera. These speckle photographs were subsequently digitized using a CCD camera for input into an image processing computer. By gray-level subtraction of carefully registered pairs of speckle images, fringes corresponding to the relative surface displacements were obtained. A sequence of these fringe patterns was reconstructed to obtain the time-history of deformation. These are compared with time-frozen (strobed) patterns for the same body.

    4/25/2018 · Applied Mechanics
    The development of a nondestructive, full-field, quantitative optical technique, and its feasibility to study dynamic deformations of opaque and diffusively reflecting solids under transient loads, are discussed. The technique involves recording a sequence of dynamically changing two-beam speckle interference patterns (also called holographic speckle patterns) of a rapidly deforming body which is doubly illuminated by a laser light source. The time sequence of speckle patterns is recorded by means of a high-speed camera on an ultra-sensitive 35-mm film. The developed negatives are then digitized by a CCD camera into an image processing system. An initial speckle pattern corresponding to the undeformed state of the object is taken as the reference, and subsequent speckle patterns are digitally subtracted (reconstructed) from it to produce time-varying fringe patterns corresponding to the relative deformation of the test object. In order to gain confidence that the technique can be used to record truly transient deformation, it is tested here on a vibrating plate at resonance, thereby obtaining the evolution of the fringe pattern during 1/2 cycle of deformation corresponding to 160 ┬Ás.

    4/6/2018 · Engineering
    A gray level transformation is presented to simulate the interferometric process. The transformation uses properties of sinusoidal functions to produce rapidly varying intensities from those with nearly zero gradients. The transformation when used in conjunction with optical techniques, such as holographic interferometry, has the effect of increasing the optical sensitivity and producing a large number of fringes where otherwise only a fraction of a fringe would be observed. This technique is ideal for holographic analysis of deformations in microscopic regions.

    3/15/2018 · Engineering
    An In-Vehicle Data Acquisition/Monitoring Device (Data Logger) has been developed to be used for evaluating the performance of alternators during vehicle operation. It can be linked to other controllers and electronic devices for exchange of information through the use of a serial communication port. By utilizing a microcontroller, eight analog and three TTL level signals are measured and recorded in non-volatile EEPROM memory devices. The system measures temperatures of critical components, system voltage and rotational speed.