
Asymptotic Expansions
 
and Influence Coefficients
 

for Edge-Loaded Conical Shells
 

By S. Nair and A. M. Ahmadshahi 

The equations of linear elasticity for rotationally symmetric deformations are 
expanded using a small parameter related to the thickness to radius of curvature 
ratio of the shell to obtain the classical thin shell equations of conical shells as a 
first approximation. These classical equations with variable coefficients permit 
further asymptotic expansions in the cases of steep as well as shallow cones, 
yielding systems of equations with constant coefficients. Solutions of these 
equations are used to compute the influence coefficients relating edge loads and 
edge displacements. 

Introduction 

In the case of circular cylindrical shells, asymptotic expansions of the.equations 
of elasticity resulting in a sequence of systems of equations, the first of which is 
the classical theory, have been obtained by Johnson and Reissner [1]. Further 
results for cylindrical shells using these expansions have been reported by 
Reissner and coworkers [2-5]. A study of conical shells along the lines of [1] has 
not been carried out so far. In the present paper first we show that such a 
derivation is indeed possible. We list two sets of differential equations, the first 
being the classical conical shell theory and the second representing the effects due 
to finite thickness. We also derive a characteristic length for the edge bending 
effect, which varies from the entire domain in the case of a shallow conical shell 
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to the characteristic length associated with the cylindrical shell for high conicity. 
The classical theory of conical shells is embodied in a system of differential 
equations which can be reduced to a single fourth order differential equation 
with variable coefficients. The solutions of these equations are in terms of Kelvin 
functions [6], which are related to Bessel functions. Here we show that the 
introduction of a second small parameter related to the conicity of the shell can 
be used to perturb the classical equations to obtain an asymptotic sequence, the 
first of which represents a cylindrical shell and the effects of conicity appearing 
in the higher order systems. This small parameter is in fact the ratio of the 
characteristic length to the length of the shell. Interestingly, a one term correction 
gives sufficient accuracy even for apparently shallow cones with serniapex angles 
as high as 70°. 

The results for steep conical shells are supplemented with asymptotic results 
for shallow shells using a second small parameter. Effectively, we consider 
shallow shells as obtained by perturbing a circular plate. Finally, for the sake of 
comparison the exact influence coefficients are computed using the Kelvin 
functions. Numerical results are given in tabular form. 

Formulation of the problem 

We consider the equations of linear elasticity for rotationally symmetric deforma
tions in polar coordinates (r, 8, z) in the form 

rozr,z + (ror),r - 00 = 0, (1) 

(2)£0 = urlr, 

Introducing the coordinate transformation 

x = zcosa + rsina, y = rcosa- zsina, (3) 

we define a conical shell with semiapex angle a, (slant) length I, and semithick
ness c as the domain: 0 < x < I, - C < Y < C, 0 < 8 S; 2",. 

Denoting the displacement components by (u ' uy' uo) and stress components x 
by (ox, 0y' 00'0Xy)'	 the equations (1) and (2) can be written as 

[(x+ ycota)oxl,x +(x+ ycota)oX,y - (10 = 0 
(4) 

[(x + ycot a)oXY] ,x + (x + ycot a)or,r - 0ocot a = 0 

and 

u; + uycot a 
£ - ---'--0- x+ ycota 

(5) 
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These equations are supplemented by the constitutive relations 

(6) 

We assume the inner and outer surfaces of the shell are free of tractions and 
the edge x = l is subjected to prescribed normal stress ax(Y) and shear stress 
ax/y) in such a way that overall equilibrium is maintained. These conditions can 
be written as 

o < x < J, y = ± c: (7) 

x=l, -c<y<c: (8) 

(9) 

where R o = Jtan a is the smaller radius of principal curvature at the edge of the 
shell. 

At any point x on the midsurface of the shell we define stress resultants and 
moments 

(10)Nx= fcGx(l+ ;)dy, 

u, = fcGx(l+ ;)ydy, (11) 

u, = r Goydy (12) 
-c 

(13)
 

where R = x tana. 
Considering the linearity of the problem, it is convenient to divide the 

boundary conditions (8) and (9) into two sets: 

(14) 

and 

MJO) = O. (15) 

If the prescribed functions ax and a satisfying the constraint (9) have zero x y 
moment and shear force, their effect will be confined to a narrow zone of width c 
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adjacent to the edge of the shell. Our problem concerns a second boundary layer 
within which the effect of the applied bending moment and shear force is 
significant. We assume the width of this second layer is b and use this character
istic length b and a reference stress (Jo related to the magnitude of Mo or Qo to 
introduce the following nondimensional quantities: 

x-I 
~ = -b-' (16) 

(17)
 

(18)
 

Here the nondimensional coordinates (t 11), the stress components (Sg, So, s.", Sg.,,), 
and the displacement components (u, w) are of the order of unity. Furthermore, 
the parameters p and A satisfy inequalities 

o < p « 1, o <A,::;1. (19) 

Introducing the nondimensional quantities into the equations (4)-(6), we 
notice that 

b = pltana = VCRo (20) 

in order to obtain the classical conical shell theory as a first approximation, 
neglecting higher order terms in p. The parameter Acan be expressed as 

A = bll = ptana = JCIR o tan «. (21) 

For small values of p, the characteristic length b approaches I only when a is 
close to 90°. 

The equations of elasticity come out to be 

[(1 + A~ + p211)sd.g + [(1 + M + p211)S~."1..,, - ASo = 0, 
(22) 

[(1+A~+p211)S~."L + [(I+A~+p211)S."L - So = 0 

and 

W+AU So- pSi;  pp2S." 

1- p 2 

(23)
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The stress resultants and moments are given by 

(24) 

where 

(25) 

The two sets of boundary conditions in Equations (14) and (15) can be written as 

~ = 0: [m~,q~,n~] = [1,0,0], (26a) 

~ = 0: [m~,q~,n~] ='[O,I,A], (26b) 

As has been done for cylindrical shells in [1], we may expand all functions 
f (~, T/; p) in asymptotic series 

(27) 

The systems of equations corresponding to the first two terms in such an 
expansion, along with the appropriate boundary conditions, are listed below: 

[(1+ AOs~oL + (1+ A~)S~'lO,'l - Asoo = 0, 

[(1+ A~)S~'lO L + (1+ A~)S'lO,'l - Soo = 0, 

s~o - PSOO Wo + AU o Soo - ps~o 
uo,~ = 1 2' 2-P 1+ A~ = 1- p ' 

WO,'l = 0, Wo,~ + uO''l = 0, (28) 

S'lo(t ±I) = 0; (29) 

~ = 0: (30) 
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(31)~ = 0: 

[(1 + A~)SEd.E + (1+ A~)sE1JI.1J - ASOI = - TjSEo.E - (TjSE1JO).1J' 

[(1 + A~)SE1Jd.E + (1+ A~)S1JI.1J - SOl = - TjSE1JO.E - (TjSE1JO) .1J' 

SOl - VSEI - vS1JO 

1- v2 

Wo+ AU o 
- Tj (1+ A~)2' 

2 
sE1JO, (32)w1,E + U l , 1J = l+ v 

(33) 

~ = 0: (34) 

or 

0: (35)~ = 

The above systems of equations can be solved sequentially to obtain the 
elementary theory solution and corrections of order p2. Here, we assume p2 is 
sufficiently small and confine ourselves to the zeroth order system of equations. 

Steep conical shells 

We will explore the possibility of expanding the system of equations (28)-(31) in 
terms of the parameter A= p tan a, In fact each system of equations obtained 
using the asymptotic expansion in p can be further expanded in terms of the 
parameter A. The advantage of such expansions is that the governing differential 
equations come out to have constant coefficients in contrast with the variable 
coefficient type encountered in the elementary conical shell theory. Thus, in place 
of Kelvin functions we will have exponentials as solutions. We note that except 
for the case of tan a - (ljp), which represents an extremely shallow shell, linear 
terms in A are sufficient to retain the accuracy of the elementary theory. For 
convenience, we omit the subscript 0 in the zeroth order system and expand all 
the variables in the form 

(36)
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Equations (28)-(31) become 

WO.l) = 0, WO.~ + UO.l) = 0, (37) 

(38) 

~ = 0: (39) 

or 

~ = 0: (40) 

We observe that these equations are the same as those describing a thin 
cylindrical shell [1] and the effects of the conicity appear in the higher order 
terms. The first order system is given by 

(41) 

sl)l(t±l) = 0, s~l)la,±l) = 0, (42) 

~ = 0: fl ['l/S~I,S~l)I,S~rl d'l/ = [0,0,0], (43) 
-1 

or 

~ = 0: (44) 

If tana: is of the order of unity, the error involved in neglecting the >.?-terms is of 
the same order as the error due to neglecting the p2-terms. 

The solutions of the zeroth order system is identical to those of the cylindrical 
shell. In terms of the midplane tangential displacement Uo(~) and normal 
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displacement Wo(~), the solutions of the zeroth order system are 

S~o = - 'I)Wo", 

(45a) 

where ( )' represents differentiation with respect to ~, 

t: = 1:. -p- W!" (45b)o 3 1- p2 0' 

and Wo satisfies the differential equation 

(45c) 

It remains to solve Equation (45c) subject to either one of the two sets of 
boundary conditions. Before we do that, let us obtain the general solution for the 
first order system. 

Again, in terms of function U1 and WI we obtain 

1 
s = - T1(W" + pW';') - - W/"
~1 ·f 1 0 3 0' 

(46) 
s = 1'/2 -1 (Will + Jv.1I)

'11 2 1 0' 

where 

(47) 

and WI satisfies the differential equation 

(48)
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The solutions of Equations (45c) and (48) which are bounded as g- - 00 are 
given by 

Wo = [Aocos/Cg + Bosin/Cg]eK~, (49) 

WI = [AICOS/Cg+BIsin/Cg]eK~ +i(gwo-eWo'), (50) 

where the constants Ao' Bo, AI' and BI are to be evaluated using Equations (39) 
and (43) when the edge moment is prescribed and using Equations (40) and (44) 
when the edge shear force is prescribed. In the case of prescribed moments we 
find 

3 3
A =-- B =-

o 4/C2' o 4/C2' 
(51) 

A = _3_ 4v-1 3 
B I = -3 v. 

I 4/C3 4 ' 4/C 

In the case of prescribed shear force we have 

3 
Ao = -3' Bo = 0,

4/C 
(52) 

With the above constants we may evaluate the stresses and displacements in 
the shell, including the effects of conicity. 

Flexibility coefficients for steep shells 

Weare interested in obtaining effective normal displacement and rotation at the 
edge of the shell and in relating these quantities to the applied moment and shear 
force. In order to account for the zero axial force, we introduce weighted axial 
displacement U,*, radial displacement U,*, and rotation f3 * through the work 
relation 

~*(Nxcosa-Qxsina) + uri», sino. + Qxcosa) + f3*Mx 

= i{}UiJx+ Upxy )(l + ;Jdy, (53) 

where all the quantities are evaluated at x = I. Using the relation N; = Qx tan a, 
Equation (53) reduces to 

where the effective edge displacement W* is defined as U,*Icos a. 
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We introduce the flexibility coefficients CMM, CMQ = CQM, and CQQ through 
the relations 

/3* = CMMMo + CMQQo, 
(55) 

W* = CQMMO + CQQQo' 

Differentiating Equation (55) with respect to M o and Qo and identifying the 
coefficients of M o and Qo on the right hand side, we get 

CMM = {)Ux,m(Jx,m + Uy,mO'xy,mJ(1 + £J dy, 

CMQ = f~)Ux,m(Jx,q+Uy,m(Jxy,q](l+ IJdy, (56) 

where we have used the notation 

f.q = f(Mo = 0, Qo =1). (57) 

In terms of the nondimensional variables the flexibility coefficients are 

(58) 

Neglecting the p2 and A2 terms and introducing 

(59)
 

and 

when M o = 1, Qo = 0, 

when Mo = 0, Qo = 1, 

(60)
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we evaluate the above integrals to obtain 

c = - ~ (1- ~ 4v -1 ) (61)
MQ K 4 'ECp 2 

We note that f3* is proportional to - W', and W* is proportional to W + AU, 
with the constants of proportionality representing the factors used in the nondi
mensionalization. 

Shallow conical shells 

It is of interest to seek asymptotic expansions of the zeroth order system 
(28)-(31) in terms a small parameter when the semiapex angle a is close to 900 

• 

For this purpose we introduce the following nondimensional quantities: 

c _ cotan=,t 8=
I ' 

A (62)0' c' - 8 ' 

[(Jx' (Jo, (Jy' (JXY] 
(63)

0'0 

(64) 

Here the nondimensional coordinates (~, 71), stress components (s~, so' s ,s~ ), 
and displacement components (u, w) are of the order of unity. '1 '1 

The stress resultants and moments are given by 

(65) 

where 

(66) 



102 s.Nair and A. M. Ahmadshahi 

The two sets of boundary conditions in Equations (14) and (15) can be written as 

~ = 0: [m~, q~, n~] = [1,0,0], (67) 

~ = 0: [m~,q~,n~] = [O,A,l], (68) 

The classical equations of conical shells are now obtained as 

(~S~).~ + ~S~11"" - So = 0, 

(~S~11).~ + ~S1j,1j - Aso = 0, 

s~ - pSo u+Aw 
u 

,~ 
-- 1-p 2 ~ 

W,11 = 0, w,~ + U,11 = 0, (69) 

S~11(~' ±1) = 0, S11(~' ±l) = 0, (70) 

~ = 0: fJ1jS~,S~11'S~] d1j = [1,0,0] (71) 

or 

~ = 0: (72) 

We note that the omitted terms in the above system are of the order of 5 cot a. 
For converting the above system into a sequence of equations with constant 
coefficients we use the parameter A = (cot a)/5. For A to be small cot a must be 
of the order of 52, and then the neglected terms in the equations of elasticity turn 
out to be of the order of 53. This implies that we may consider relatively thick 
shells. For example, if 5 = 0.2, the error involved in the classical equations of 
conical shells comes out to be of the order of 0.008, and for A = 0.2 we may have 
a > 880 We need only terms of order A2 in an asymptotic expansion in terms of • 

A to retain the same accuracy as in the classical shell equations. Of course, 
expanding the classical equations in terms of A is equivalent to perturbing a 
circular plate into a shallow cone: 

(~s~o),~ + ~S~110,11 - soo = 0, 

(~S~110),~ + ~S110'11 = 0, 

pUo 
s~o = uo,~ + T' soo = TUo + pUo,~, 

WO,11 = 0, wo,~ + UO,11 = 0, (73) 

s11o(~,±l) = 0, s~11o(t±l) = 0, (74) 

~ = 0: t [1jS~o, S~110' s~o] d1j = [1,0,0] (75) 
-1 
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or 

(76)~ = 0: 

We observe that these equations are the same as those describing a circular plate 
and the effects of the conicity appear in the higher order equations. The first and 
second order systems are given by 

(~~l),~ + ~S~1Jl,1J = SOD' 

(~S~1Jl),~ + ~S1Jl,1J = 0, 

Wl,1J = 0, Wl,~ + ul , 1J = 0, (77)
 

S1Jl(t ±1) = 0, S~1Jl(t ±1) = 0, (78)
 

~ = 0: J1 ['T/S~l' S~1Jl' s~d d'T/ = [0,0,0] (79)
 
-1 

or 

~ = 0: (80) 

(~S~2),~ + ~S~1J2,1J = SOl' 

(~S~1J2),~ + ~S1J2,1J = 0, 

(81) 

S1J2(t ±1) = 0, S~1J2(t ±1) = , (82) 

~ = 0: fJ TJS~2' S~1J2' S~2] dTJ = [0,0,0] (83) 

or 

~ = 0: (84) 

The displacement components Ui and Wi (i = 0,1,2) may be expressed in terms 
of midplane tangential and normal displacements O;(~) and ~(~) in the form 

(85) 

to have vanishing normal and shear strains. Introducing these into the constitu
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tive relations, we find 

0.+ W ( W')s/i; =	 U;' + p / ~ / - '1/ W;" + rt: ' 

U; + W; U;' (W" W;' )
so; = ~ + PT - '1/ v i + T ' 

(86) 

~S/il1;	 = '1/2;1 ((~W;")'+ i'), 
2

~Sl1; = 1-;11 [ ( W~~1 +PW;~I)+t((~W;II)'+ i')']. 
where quantities with negative subscripts are taken to be zeros. 

The boundary conditions at '1/ = ±1 yield the differential equations for U; and 
W;, 

' )'	 (Ul+W2 )(~W;")" - ('i:W = 3 /- ~ /- + PU;'-1 , 

(87) 
( t:U' )' U; W;-1 W's; - T = -~- - P ;-1' 

For i = 0, 1, and 2 the solutions of the differential equations (86) and (87) can be 
written as 

W	 1 C;~2 1- PC t:4 1 A t:3 
; = 2" 1+ P - 32 ;-2S -"3 ;-IS , 

(88) 

where C; and A; are constants to be evaluated. We also note that the above 
solutions do not include certain terms which have singularities as ~ ~ O. 

The stresses can be obtained in terms of these constants as 

1- p 2 1- P 
s/i; =	 A; - -S-A;-2e + -3-C;-I~ 

-11 [c; -(1- p) 3; P C;-2e - (2+ P )A;_I~]' 

1- p2 1- p
 
so; = A; - 3-S-A;-2e + 2-3-C;-I~
 

-11[C; - (1- p) 1 ~3p C;-2e -(1 +2p)A;-I~]' 

1- '1/2 [
~sh;	 = -2- 3A;_I~+(1-p)C;_2e], 

1- '1/2	 'l}2-1
~Sl1i = -2-[Ci-l-(1+2p)A;-2~] +'1/-6-[3A;_1+2(1-p)C;_2~]' (89) 
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The stress resultants and moments are given by 

3+v 2 ]m(;i = '32[Ci-(I-p)-8-Ci-2~ -(2+p)Ai-l~ , 

1- p2 2 1- p ] (90)
n"i = 2[Ai- -8-Ai-2~ + -3-Ci-l~ , 

The overall equilibrium condition q"i = n"i-I is, of course, satisfied by the above 
resultants. 

We next evaluate the constants in these solutions using the two systems of 
boundary conditions. In the case of prescribed moment we find 

I-v 
Ao = 0, Al = -2-' 

(91) 

Co = -1, CI = 0, 

and in the case of prescribed shear force 

5-8p -5p2 

A 2 = - 48 (92) 

Co = 0, (93) 

With the above constants we may evaluate the stresses and displacements in 
the shell for small values of A. 

Flexibility coefficients for shallow shells 

As for steep shells the flexibility coefficients can be expressed as 

(94) 
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Neglecting the 82A and N terms, we find 

2
1- p 3 ( 2 1- P)

CM M = Ee2t; 2(1+ p) 1- A -4- , 

(95) 

21- p 1 ( 25+ P)
CQQ = EA28 2(1+p) l+A 12 . 

We note that it would have been more appropriate to obtain influence 
coefficients involving No instead of Qo for this problem. However, a comparison 
with the results of thin conical shell theory is facilitated by employing CMQ and 
CQQ • 

Exact solution and comparison 

Exact solutions of the thin shell equations (28)-(31) are well known. It is of 
interest to compare our present results with the exact results. A brief outline of 
the solution in terms of Kelvin functions is given below: 

w = W, u = u- 1/£0W, 

m.u	 m.2W U + AW - 1/£0W
S ~ =;;:0 - 1/;;:0 + P ~ , 

_ (m.U- m.2W) U + AW - 1/£0W
So -	 p;;:o "';;:0 + ~ , 

(96)
.,,2 -1 [ 2]

S"'l =	 ~ a£0) -1 £0W,
 

." - .,,3 1 [ 2] .,,2 - 1
 
s'l =	 6g2£0~ (~£0) -1 £0W- A~[l+p~£0]£0W, 

where £0 is the differential operator a/a~ and the functions U and W satisfy 

[(~£0)2-1]U+A(p~£0-1)W= 0, 

A(~£0+p)U+ 31~[(~£0)2-1]£0W+pA2W= O. (97) 

Eliminating U from the above relations, we obtain the classical conical shell 
equation 

(98) 
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where p.4 = 3(1- p2)A2. The differential operator can be factored to obtain the 
solution 

~W = Av + Au (99) 

where v satisfies 

(100)
 

and where represents complex conjugate. With the change of variable 

(101)
 

the above equation can be transformed into one in the Bessel equation family, 

~v' + ~v' - (i~2 +4)v = 0, (102) 

where prime denotes differentiation with respect to r The solution of this 
equation in terms of Kelvin functions is given by 

(103)
 

The quantities of interest, M~, q~, W'( g), and W + U/ A at the edge g= 1, can be 
obtained as 

2 
m~ = -"3 Re[A( v' + pv)], 

(104) 
W' = ReAv, 

U = Im[A(v'- pv)]
W + A 2·

P. 

For the two cases of boundary conditions we find 

3 vA=--=--,----,--------,- (105)4 Re(vv' + p vv ) 

and 

A = __3_ u'+pu 
(106)4ip,2 Re( vv'+ puv) . 
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Using the notation 

p = io, q = Imv'v, r = Reu'F, s = v'v', (107) 

we write the flexibility coefficients as 

c 
MM 

c 
MQ 

= 1 1 v 
2 

P 
2 EC2~ fLY + vp' 

- _1- 1- p2 q 
- 2JL Ec~ JLY + vp' (108) 

To compare the above exact results with our asymptotic results we have taken 
v = 0.3 and ~(= cll) = 0.05,0.1, and 0.2. The semiapex angle is varied from 10° 

Table 1 
Comparison" of Exact and Asymptotic Values of cm m 

for Steep Shells 

IX ~ =0.01 0.02 

cm m 

0.03 0.04 0.05 

10° 0.069 
0.069 

0.098 
0.098 

0.119 
0.120 

0.138 
0.138 

0.154 
0.154 

20° 0.099 
0.099 

0.140 
0.140 

0.171 
0.171 

0.197 
0.198 

0.220 
0.221 

30° 0.125 
0.125 

0.176 
0.176 

0.215 
0.216 

0.247 
0.249 

0.276 
0.278 

40° 0.150 
0.150 

0.211 
0.212 

0.258 
0.260 

0.297 
0.299 

0.330 
0.334 

50° 0.178 
0.179 

0.251 
0.252 

0.306 
0.309 

0.351 
0.356 

0.391 
0.397 

60° 0.215 
0.216 

0.301 
0.304 

0.366 
0.371 

0.420 
0.428 

0.467 
0.478 

70° 0.269 
0.271 

0.376 
0.382 

0.456 
0.466 

0.673 
0.537 

0.717 
0.599 

80° 0.381 
0.387 

0.679 
0.545 

0.761 
0.665 

0.824 
0.765 

0.875 
0.853 

"The exact values are shown above the asymptotic ones. 
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Table 2 
Comparison" of Exact and Asymptotic Values 

of Cmm for Shallow Shells 

Cm m 

a 8= 0.05 8= 0.1 8=0.2 

89.5° 1.152 1.153 1.154 
1.148 1.152 1.153 

89.0° 1.146 1.152 1.153 
1.129 1.148 1.152 

88.5° 1.136 1.149 1.153 
1.098 1.140 1.150 

88.0° 1.124 1.146 1.152 
1.055 1.129 1.148 

87.5° 1.109 1.141 1.150 
1.000 1.115 1.144 

87.0° 1.092 1.136 1.149 
0.932 1.098 1.140 

86.5° 1.074 1.130 1.148 
0.852 1.078 1.135 

86.0° 1.056 1.123 1.146 
0.759 1.055 1.129 

85.5° 1.038 1.116 1.144 
0.654 1.028 1.122 

85.0° 1.020 1.109 1.141 
0.536 0.999 1.115 

"The exact values are shown above the asymptotic ones. 

to 80° for steep shells, and from 89.5° to 85° for shallow shells. Furthermore, we 
define a nondimensional coefficient 

(l09) 

The results for steep shells are shown in Table 1. As mentioned earlier, these 
values are surprisingly dose for thin shells even when the apex angle is as high as 
70°. The results for shallow shells are given in Table 2. The asymptotic solutions 
are good approximations only for a dose to 90°. 
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Conclusions 

Equations of thin conical shells are derived from three dimensional (rotationally 
symmetric) elasticity equations using a small parameter p, the thickness to shell 
characteristic length ratio. In the case of steep shells, these equations are further 
expanded using a parameter A, the ratio of the characteristic length associated 
with edge bending to the shell length. This parameter is small even when the 
semiapex angle of the shell is close to 70° for thin shells. The solutions of conical 
shell equations can be expressed as the sum of the solutions for a cylindrical shell 
and small perturbations in terms of A. In the case of shallow conical shells, the 
thin shell equations can be expanded in terms of a small parameter A [= 
(cot a)//c]. This expansion is useful when the semiapex angle is very close to 90° 
and the solutions are perturbed results of circular plate theory. 
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