DFTL: A Flash Trandation Layer Employing Demand-based
Selective Caching of Page-level Address Mappings

Aayush Gupta Youngjae Kim Bhuvan Urgaonkar

Department of Computer Science and Engineering
The Pennsylvania State University, University Park, PA 16802, USA
{axg354, youkim, bhuvar@cse.psu.edu

Abstract lector), compared to a state-of-the-art FTL scheme. Even

Recent technological advances in the development of flash-T0f the well-known read-dominant TPC-H benchmark, for
memory based devices have consolidated their leadershigV/hich DFTL introduces additional overheads, we improve
position as the preferred storage media in the embeddedYStem response time by 56%.

system_s market and opened new vis_tas for de_ployment inCategoriesand Subject Descriptors  D.4.2 [Storage Man-
epterprlse-scale storage system;. Unlike hard disks, flash deégemer’]t Secondary Storage

vices are free from any mechanical moving parts, have no

seek or rotational delays and consume lower power. How- General Terms Performance, Measurement

ever, the internal idiosyncrasies of flash technology make

its performance highly dependent on workload character- Keywords Flash Management, Flash Translation Layer,
istics. The poor performance of random writes has been Storage System

a cause of major concern which needs to be addressed to

better utilize the potential of flash in enterprise-scale envi- 1. | ntroduction

ronments. We examine one of the important causes of this
poor performance: the design of the Flash Translation Layer
(FTL) which performs the virtual-to-physical address trans-
lations and hides the erase-before-write characteristics of
flash. We propose a complete paradigm shift in the design
of the core FTL engine from the existing techniques with
our Demand-based Flash Translation Layer (DFTL) which
selectively caches page-level address mappings. We develo
a flash simulation framework called FlashSim. Our experi-
mental evaluation with realistic enterprise-scale workloads
endorses the utility of DFTL in enterprise-scale storage sys-
tems by demonstrating: (i) improved performance, (ii) re-
duced garbage collection overhead and (iii) better overload
behavior compared to state-of-the-art FTL schemes. For ex-
ample, a predominantly random-write dominant 1/O trace
from an OLTP application running at a large financial insti-
tution shows a 78% improvement in average response time
(due to a 3-fold reduction in operations of the garbage col-

Hard disk drives have been the preferred media for data stor-
age in enterprise-scale storage systems for several decades.
The disk storage market totals approximately $34 billion an-
nually and is continually on the rise [27]. However, there are
several shortcomings inherent to hard disks that are becom-
ing harder to overcome as we move into faster and denser de-
sign regimes. Hard disks are significantly faster for sequen-
Ral accesses than for random accesses and the gap continues
to grow. This can severely limit the performance that hard
disk based systems are able to offer to workloads with sig-
nificant random access component or lack of locality. In an
enterprise-scale system, consolidation can result in the mul-
tiplexing of unrelated workloads imparting randomness to
their aggregate [6].

Alongside improvements in disk technology, significant
advances have also been made in various forms of solid-state
memory such as NAND flash, magnetic RAM (MRAM),
phase-change memory (PRAM), and Ferroelectric RAM
(FRAM). Solid-state memory offers several advantages over
hard disks: lower and more predictable access latencies for
random requests, smaller form factors, lower power con-
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disks have already been replaced by flash memory in sometems possess an asymmetry in how they can read and write.
consumer devices like music players, PDAs, digital cameras. While a flash device can read any of fgages(a unit of
Flash devices are significantly cheaper than main mem-read/write), it may only write to one that is in a special state
ory technologies that play a crucial role in improving the callederasedFlashes are designed to allow erases ata much
performance of disk-based systems via caching and buffer-coarser spatial granularity than pages since page-level erases
ing. Furthermore, as an optimistic trend, their price-per-byte are extremely costly. As a typical example, a 16GB flash
is falling [21], which leads us to believe that flash devices product from Micron [23] has 2KB pages while the erase
would be an integral component of future enterprise-scale blocks are 128KB . This results in an important idiosyn-
storage systems. This trend is already evident as major storcrasy of updates in flash. Clearly, in-place updates would re-
age vendors have started producing flash-based large-scalquire an erase-per-update, causing performance to degrade.
storage systems, such as RamSan-500 from Texas Memorylo get around this, FTLs implemenut-of-place updates
Systems, Symmetrix DMX-4 from EMC, etc. In fact, Inter- An out-of-place update: (i) chooses an already erased page,
national Data Corporation has estimated that over 3 mil- (ii) writes to it, (iii) invalidates the previous version of the
lion Solid State Disks (SSDs) will be shipped into enter- page in question, and (iv) updates its mapping table to re-
prise applications, creating 1.2 billion dollars in revenue by flect this change. These out-of-place updates bring about the
2011 [27]. need for the FTL to employ a garbage collection (GC) mech-

Using Flash Memory in Enterprise-scale Storage.  Before anism. The role of the GC is to reclaim invalid pages within
enterprise-scale systems can transition to employing flash-bl(?%ks by erastlﬁ_g ttr;e bk:CkS (ar;d i tneEde(le r%oc?ltlng_l?cy
based devices at a large-scale, certain challenges must p&all .p”agef? th flln hem fo new locations). Evidently,
addressed. It has been reported that manufacturers are Se&_ruga yaf1 EC s flas dpf?.r olr ’T‘a”‘;]e- FTL f . .

ing return rates of 20-30% on SSD-based notebooks due to ne of the main difficulties the aces In ensuring

failures and lower than expected performance [4]. While not H'gmpsegzqunceés theh;evere_lty ct:onstr_::uned siz€ O?n;?
directly indicative of flash performance in the enterprise, this as “Dased cachenere It stores 1S mapping fab'e.

is a cause for serious concern. Upon replacing hard disks 0" example, a 16GB flash_dewce requires at I_east_32MB
with flash, certain managers of enterprise-scale applicationsSRA'vI to. be able tq map aIIl|ts pages. With growing sze of
are finding results that point to degraded performance. ForSSDS’ t.h|s SRAM size is unlikely to spale pr(_)portlonallydue
example, recently Lee et al. [18] observed that “database © the higher price/byte of SRAM. This prohibits FTLs from

servers would potentially suffer serious update performancekeefllomrg1 virtual-lto-plhysical_ addr(e)sstrr]napfr:ngi fo;all g?gis
degradation if they ran on a computing platform equipped on flas (p?‘ge' eve mapp|_ng). n .e_o er hand, a block-
with flash memory instead of hard disks.” There are at least level mapping, can lead to increased: (i) space wastage (due

two important reasons behind this poor performance of flash tc(; mte:rngl cf:r{.-xg dmengatlon)r?nd d(") Eln_erformatnc?hdegr?jc_if?tlo?
for enterprise-scale workloads. First, unlike main memory (due to -induced overheads). To counter these dificul-

devices (SRAMs and DRAMS), flash imt alwayssupe- ties, state-of-the-art FTLs take the middle approach of using
rior in performance to a disk - in sequential accesses, disks® hy_?”g()f pgge-l;ve][ Td l_)lock-le_ve_(ljmapplngs 6}”.01 ?Le pri-
might still outperform flash [18]. This points to the need for marily based on the following main idea (we explain the in-

employing hybrid storage devices that exploit the comple- tricacies of individual FTLs in Section 2): most of the blocks

mentary performance properties of these two storage media.(c"j‘”ed Data Blocks) are mapped at the block level, while a

While part of our overall goal, this is out of the scope of this small number of blocks called "update t.)IOCkS are mapped
paper. The second reason, the focus of our current research"flt the page level and are used for recording updates to pages

has to do with thgerformance of flash-based devices for in the data plocks. S . . .
workloads with random writefRecent research has focused As we will argue in this paper, various variants of hyt_)rld
on improving random write performance of flash by adding FTL fail to offer goc_;d enough perfqrmance for enterprise-
DRAM-backed buffers [21] or buffering requests to increase scale workloads. F'r.St’ these _hybrld schemes suffer from
their sequentiality [16]. However, we focus on an intrinsic poor garbage collection behavior. Second, they often come

component of the flash, namely tRéash Translation Layer With a n_umber of workload-specific tunable parameters (for
(FTL) to provide a solution for this poor performance. optimizing performance) that may be hard to set. Finally and
most importantly, they do not properly exploit the temporal

The Flash Trandation Layer. The FTL is one of the core  |ocality in accesses that most enterprise-scale workloads are
engines in flash-based SSDs that maintains a mapping taknown to exhibit. Even the small SRAM available on flash
ble of virtual addresses from upper layers (e.g., those com-devices can thus effectively store the mappings in use at
ing from file systems) to physical addresses on the flash. Ita given time while the rest could be stored on the flash
helps to emulate the functionality of a normal block device device itself. Our thesis in this paper is that such a page-level

by exposing only read/write operations to the upper soft- FTL, based purely on exploiting such temporal locality, can
ware layers and by hiding the presencestdseoperations,

something unique to flash-based systems. Flash-based sys-



outperform hybrid FTL schemes and also provide a easier-device. Table 1 shows organization and performance char-
to-implement solution devoid of tunable parameters. acteristics for these two variants of state-of-the-art flash de-

I . ) vices [24].
Research Contributions. This paper makes the following

SpeCiﬁC contributions: Flash Type Paggg;g%itgligsk Page Aclcje;sngime Block
e We propose and design a novel Flash Translation Layer Datd OOB| (Bytes) ||READ (USLNR'TE (USERASE (ms)
calledDFTL. Unlike currently predominant hybrid FTLs, I f;*:gg Bloc |250142$! o I((llsglzfjéﬂ LIRS I AR I 2 I
it is purely page-mapped. The idea behind DFTL is sim-
ple: since most enterprise-scale workloads exhibit signif- Taple 1:NAND Flash organization and access time comparison
icant temporal locality, DFTL uses the on-flash limited for Small-Block vs. Large-Block schemes [24].
SRAM to store the most popular (specifically, most re-
cently used) mappings while the rest are maintained on  As shown in Table 1, erase operations are significantly
the flash device itself. The core idea of DFTL is easily slower than reads/writes. Additionally, write latency can be
seen as inspired by the intuition behind the Translation higher than read latency by up to a factor of 4-5. The lifetime
Lookaside Buffer (TLB) [9]. of flash memory is limited by the number of erase opera-
e We implement an accurate flash simulator caléash- tions on its cells. Each memory cell typically has a lifetime
Simto evaluate the efficacy of DFTL and compare it with of 10K-1M erase operations [3]. Thusgear-levelingtech-
other FTL schemes. FlashSim is built by enhancing the niques [12, 15, 22] are used to delay the wear-out of the first
popular Disksim 3.0 [5] simulator. Flashsim simulates the flash block. The granularity at which wear-leveling is carried
flash memory, controller, caches, device drivers and vari- out impacts the variance in the lifetime of individual blocks
ous interconnects. and also the performance of flash. The finer the granularity,
e Using a number of realistic enterprise-scale workloads, the smaller the variance in lifetime.
we demonstrate the improved performance resulting from
DFTL. As illustrative examples, we observe 78% im-
provement in average response time for a random write-
dominant I/O trace from an OLTP application running at
a large financial institution and 56% improvement for the
read-dominant TPC-H workload.

Details of Flash Trandation Layer. The mapping tables
and other data structures, manipulated by the FTL are stored
in a small, fast SRAM. We begin by understanding two ex-
tremes of FTL designs with regard to what they store in their
in-SRAM mapping table. These will help us understand the

implications of various FTL design choices on performance.
The rest of this paper is organized as follows. In Sec-

tion 2, we present the basics of flash memory technology
including a classification of various existing FTL schemes.
The design of DFTL and its comparison with hybrid FTL

Page-level and Block-level FTL Schemes. In a page-level
FTL scheme, the logical page number of the request sent to
the device from the upper layers such as file system can be
dnapped into any page within the flash. This should remind

schemes is described in Section 3. Section 4 describes th o X .
framework of our simulator FlashSim. Experimental results the reader of a fL,“',y ass‘?‘?'at'Ye cache [9]. Th“?’ it provides
compact and efficient utilization of blocks within the flash

are presented in Section 5. The conclusions of this study are~~"" ) ) i
described in Section 6. device. However, on the downside, such translation requires

a large mapping table to be stored in SRAM. For exam-
ple, a 16GB flash memory requires approximately 32MB of
2. Background and Related Work SRAM space for storing a page-level mapping table. Given
Basics of Flash Memory Technology. Erase operations the order of magnitude difference in the price/byte of SRAM
are performed at the granularity oftdock which is com- and flash; having large SRAMs which scale with increasing
posed of multiplepages A page is the granularity at which  flash size is infeasible.

reads and writes are performed. In addition to its data area, a At the other extreme, in a block-level FTL scheme, the
page contains a small spare Out-of-Band area (OOB) whichlogical block number is translated into a physical block
is used for storing a variety of information including: (i) Er- number using the mapping table similar to set-associative
ror Correction Code (ECC) information used to check data cache design [9]. The logical page number offset within the
correctness, (ii) the logical page number corresponding to block is fixed. The size of the mapping table is reduced by a
the data stored in the data area and (iii) page state. Each pagtactor ofblock size/page siZ@ 28KB/2KB=64) as compared

on flash can be in one of three different statesvéi)d, (ii) to page-level FTL. However, since a given logical page may
invalid and (iii) free/ferasedWhen no data has been writ- now be placed in only a particular physical page within each
ten to a page, it is in the erased state. A write can be doneblock, the possibility of finding such a page decreases. As
only to an erased page, changing its state to valid. As wasa result the garbage collection overheads grow. Moreover,
pointed out, out-of-place updates result in certain written the specification for large block based flash devices requires
pages whose entries are no longer valid. They are calledsequential programming within the block [24] making this
invalid pages. Flash comes asmall blockor large block scheme infeasible to implement in such devices.
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Figure 1:Hybrid FTL Scheme, combining a block-based FTL for Mergeis performed, whereby log block B becomes new data
data blocks with a page-based FTL for log blocks. LPN: Logical block and the old data block A is erased. Figure 2(b) illus-
Page Number, PPN: Physical Page Number, LBN: Logical Block tratesPartial Mergebetween block A and B where only the
Number, PBN: Physical Block Number. valid pages in data block A are copied to log block B and the
original data block A is erased changing the block B’s sta-
tus to a data blockzull Mergeinvolves the largest overhead
Data Block A Log Block B Data Block A Log Block B

E_,, P ’ ‘ P l Lm R ' among the three types of merges. As shown in Figure 2(c),
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Log block B is selected as the victim block by the garbage
collector. The valid pages from the log block B and its cor-
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‘(a);vfch;/;ge - (o) Partial Merge responding data block A are then copied into a new erased
DA Erased ook & Log ook & block C and block A and B are erased. However, full merge
Data_008_ Data_00B Data 008 can become a long recursive operation in case of a fully-
{ i HF‘%—; L‘i:v ’ associative log block scheme where the victim log block
= et e has pages corresponding to multiple data blocks and each of
(¢) Full Merge these data blocks have updated pages in multiple log blocks.
This situation is illustrated in Figure 3. Log block L1 con-
Figure 2:Various Merge operations $witch Partial, and Full) taining randomly written data is selected as a victim block
in log-buffer based FTL schemes. V. Valid, I: Invalid, and F: for garbage collection. It contains valid pages belonging to
Free/Erased and LPN is Logical Page Number. data blocks D1, D2 and D3. An erased block is selected

from the free block pool and the valid pages belonging to

A Generic Description of Hybrid FTL Scheme. To ad- D1 are copied to it from different log bIocKs and D1 it-
dress the shortcomings of the above two extreme mappings?” in the ordgr shown. The data block D1 is then erased.
schemes, researchers have come up with a variety of alter-Similar operations are carried out for data blocks D2 & D3
natives. Although many schemes have been proposed [11, 2SINC€ L1 contains _the latest version (_)f some of the pages
19, 13, 20], they share one fundamental design principle. All for these blocks. Finally, log block L1 is eras&dus, ran-

of these schemes ardgbrid between page-level and block- dom w_ntes in hybrid FTLs induce costly garbage collect!on
level schemes. They logically partition their blocks into two Which in turn affects performance of subsequent operations
groups -Data Blocksand Log/Update BlocksData blocks irrespective of whether they are sequential or randﬁh_a:

form the majority and are mapped using the block-level map- ¢ent log buffer-based FTL schemes [13, 20] have tried to
ping scheme. A second special type of blocks are called log "@duce the number of these full merge operations by segre-
blocks whose pages are mapped using a page-level mappingat'ng log blocks based on access pattems. Hot blocks with
style. Figure 1 illustrates such hybrid FTLs. Any update on Irequently accessed data generally contain large number of
the data blocks are performed by writes to the log blocks. invalid pages whereas cold blocks have least accessed data.
The log-buffer region is generally kept small in size (for ex- Utilizing hqt blocks for garbage collgctlon reduces the valid
ample, 3% of total flash size [20]) to accommodate the page- Page copying overhead, thus lowering the full merge cost.

based mappings in the small SRAM. State-of-The-Art FTLs.  State-of-the-art FTLs [2, 19, 13,
Garbage Collection in Hybrid FTLs.  The hybrid FTLsin- ~ 20] are based on hybrid log-buffer based approaches. They

available. Garbage Collection requires merging log blocks are inherent to any log-buffer based hybrid scheme, in their
with data blocks. The merge operations can be classified®Wn unique way. However, all of these attempts are unable
into: Switch mergePartial merge andFull merge In Fig- to provide the desired results.

ure 2(a), since log block B contains all valid, sequentially e Block Associative Sector Translation (BAST) [2] scheme

written pages corresponding to data block A, a singuétch exclusively associates a log block with a data block. In



presence of small random writes, this scheme suffers

from log block thrashing[19] that results in increased ey Cocragpng (s ) G Tarsaon g_{q{“;«
full merge cost due to inefficiently utilized log blocks. - —

o Fully Associative Sector Translation (FAST) [19] allows Blore gl
log blocks to be shared by all data blocks. This improves wansitons P

the utilization of log blocks as compared to BAST. FAST
keeps a single sequential log block dedicated for sequen-

tial updates while other log blocks are used for perform- pregos
ing random writes. Thus, it cannot accommodate multiple FasH | =0
sequential streams and does not provide any special mech e =

anism to handle temporal locality in random streams.

e SuperBlock FTL [13] scheme utilizes existencebddck
level spatial locality in workloads by combining consec-
utive logical blocks into a superblock. It maintains page- Figure 4: Schematic Design of DFTLD.py: Logical Data
level mappings within the superblock to exploit tempo- Page NumberDrpy: Physical Data Page Numbe¥/y px: Vir-
ral locality in the request streams by separating hot and tual Translation Page NumbeY/ppn: Physical Translation Page
cold data within the superblock. However, the three-level Number.
address translation mechanism employed by this scheme

causes multiple OOB area reads and writes for servic- mapping scheme feasible with the constrained SRAM size,
ing the requests. More importantly, it utilizes a fixed su- 3 special address translation mechanisras to be devel-
perblock size which needs to be explicitly tuned to adapt oped. In the next sub-sections, we describe the architecture

to changing workload requirements. and functioning of DFTL and highlight its advantages over
e The recent Locality-Aware Sector Translation (LAST) existing state-of-the-art FTL schemes.

scheme [20] tries to alleviate the shortcomings of FAST
by providing multiple sequential log blocks to exploit 3.1 DFTL Architecture

spatial locality in workloads. It further separates ran- ppeTL makes use of the presence of temporal locality in
dom log blocks into hot and cold regions to reduce full \orkioads to judiciously utilize the small on-flash SRAM.
merge cost. In order to provide this dynamic separation, |nstead of the traditional approach of storing all the address
LAST depends on an external locality detection mecha- yransiation entries in the SRAM, it dynamically loads and
nism. However,_ Lee et al. [20] themsglyes rea_\lize t.hat the ynloads the page-level mappings depending on the work-
proposed locality detector cannot efficiently identify se- 959 access patterns. Furthermore, it maintains the complete
quential writes when the small-sized write has sequential image of the page-based mapping table on the flash device
locality. Moreover, maintaining sequential log blocks us- jiself. There are two options for storing the image: (i) The
ing a block-based mapping table requires the sequentialoog area or (ii) the data area of the physical pages. We
streams to be aligned with the starting page offset of the :hgose to store the mappings in the data area instead of
log block in order to perform switch-merge. Dynamically oOB area because it enables us to group a larger number
changing request streams may impose severe restrictiong)f mappings into a single page as compared to storing in the
on the utility of this scheme to efficiently adapt to the QOB area. For example, if 4 Bytes are needed to represent

workload patterns. the physical page address in flash, then we can group 512
logically consecutive mappings in the data area of a single

3. Design of DFTL: Our Demand-based page whereas only 16 such mappings would fitan OOB area.
Page-mapped FTL Moreover, the additional space overhead incurred is negligi-

le as compared to the total flash size. A 1GB flash device re-
uires only about 2MB (approximately 0.2% of 1GB) space
for storing all the mappings.

We have seen that any hybrid scheme, however well-designe
or tuned, will suffer performance degradation due to ex-
pensive full merges that are caused by the difference in

mapping granularity of data and update blocksir con- Data Pages and Translation Pages. In order to store the
tention is that a high-performance FTL should completely address translation mappings on flash data area, we segre-
be re-designed by doing away with log-blockBemand- gateData-PagesaindTranslation-PagesData pages contain

based Page-mapped FTL (DFTL) is an enhanced form of thethe real data which is accessed or updated during read/write
page-level FTL scheme described in Section 2. It does awayoperations whereas pages which only store information
completely with the notion of log blocks. In fact, all blocks about logical-to-physical address mappings are called as
in this scheme, can be used for servicing update requeststranslation pages. Blocks containing translation pages are
Page-level mappings allow requests to be serviced from anyreferred to agranslation-BlocksindData-Blocksstore only

physical page on flash. However, to make the fine-grained data pages. As shown in Figure 4, translation blocks are to-



tally different from log blocks and are only used to store
the address mappings. They require about 0.2% of the entire
flash space and do not require any merges with data blocks.
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3.2 Logical to Physical Address Trandation

A request is serviced by reading from or writing to pages
in the data blocks while the corresponding mapping updates
are performed in translation blocks. In this sub-section, we
describe various data structures and mechanisms required
for performing address translation.
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F.

>
N x
@

Data Block Translation Block

Figure 5:(1) Request taDr,pn 1280 incurs a miss in Cached

Input: Request's Logical Page Numbereguest;,,, ), Request's Size Mapping Table (CMT), (2) Victim entnD.pn 1 is selected, its
(requestsizc) corresponding translation pagéppn 21 is located using Global
V?,ﬁiﬂ‘;”rt'eq'\:g;t . 4040 Translation Directory (GTD), (3)-(4Mppx 21 is read, updated
if requesty,, Miss in Cached Mapping Tabthen (Dppn 130— Dppy 260) and written to a free translation page
if Cached Mapping Table is fulhen - i
[* Select entry for eviction using segmented LRU replacement (Mppy 23), (5)-(6) .GTD is updatedM(ppn 21— Mppy 23)
algorithm */ and Dppn 1 entry is erased from CMT. (7)-(11) The original
victimy,, < select_victim_entry () request’'s D pn 1280) translation page is located on flad#i{p n
if victimigst.mod.time 7 VICtiMioad_time then B H f B
/*Uiclti%mzt:nanslation o adtime 15)..The mapping entry is loaded into CMT an.d the requestlls
Translation_Pageictim : Physical serviced. Note that each GTD entry maps 512 logically consecutive
Translation-Page Number containing victim entry */ mappings.
Translation-Pageyictim «— consult_.GTD
(victimypy)
victimyype < Translation Block . . L . .
DFTL.Service_Request(victim) directly by reading/writing the data page on flash using this
end o mapping information. If the information is not present in
erase_entry(victimipn,) ) .
end SRAM then it needs to be fetched into the CMT from flash.
Translation-Pagerequest — However, depending on the state of CMT and the replace-
consult_ GTD(request;,y) ) ) . . . . .. .
/* Load map entry of the request from flash into Cached Mapping ment algorithm being used, it may entail evicting entries
Table ™/ , from SRAM. We use the segmented LRU array cache algo-
load._entry (Translation-Pagercquest ) . . . .
end rithm [14] for replacement in our implementation. However,
requestt,pe < Data Block i it
reamest 2 T OMIT dookup(requestiyn) other.algonthms such as evicting Least Frequently Used
DFTL_ Service_Request(request) mappings can also be used.
end requestsize-- If the victim chosen by the replacement algorithm has not
been updated since the time it was loaded into SRAM, then

Algorithm 1: DFTL Address Translation A ! o
the mapping is simply erased without requiring any extra

Global Mapping Table and Global Translation Directory. operations. This reduces traffic to translation pages by a sig-
The entire logical-to-physical address translation set is al- nificant amount in read-dominant workloads. In our experi-
ways maintained on some logically fixed portion of flash and ments, approximately 97% of the evictions in read-dominant
is referred to as th&lobal Mapping TableHowever, onlya  TPC-H benchmark did not incur any eviction overheads.
small number of these mappings can be present in SRAM. Otherwise, the Global Translation Directory is consulted to
These active mappings present in SRAM form @eched locate the victim’s corresponding translation page on flash.
Mapping Table (CMT)Since out-of-place updates are per- The page is then read, updated, and re-written to a new phys-
formed on flash, translation pages get physically scatteredical location. The corresponding GTD entry is updated to re-
over the entire flash memory. DFTL keeps track of all these flect the change. Now the incoming request’s translation en-
translation pages on flash by usinGtbal Translation Di- try is located using the same procedure, read into the CMT
rectory (GTD) Although GTD is permanently maintained and the requested operation is performed. The example in
in the SRAM, it does not pose any significant space over- Figure 5 illustrates the process of address translation when a
head. For example, for a 1GB flash, 1024 translation pagesrequestincurs a CMT miss.

are needed (each capable of storing 512 mappings), requir-O head in DETL Address Trangati
. . €ss tion. Th t-
ing a GTD of about 4KB. Furthermore, storing GTD on non- verneac in ' ransation © worst-case

. . ; overhead includes two translation page reads (one for the
volatile storage aids recovery from power-failure [7] victim chosen by the replacement algorithm and the other
DFTL Address Trandation Process. Algorithm 1 de- for the original request) and one translation page write (for
scribes the process of address translation for servicing athe victim) when a CMT miss occurs. However, our design
request. If the required mapping information for the given choice is rooted deeply in the existence of temporal locality
read/write request exists in SRAM (in CMT), it is serviced in workloads which helps in reducing the number of evic-



tions. Furthermore, the presence of multiple mappings in a e

single translation page allowsatch updategor the entries

in the CMT, physically co-located with the victim entry. We
later show through detailed experiments that the extra over-
head involved with address translation is much less as com-
pared to the benefits accrued by using a fine-grained FTL.

3.3 Read/Write Operation and Garbage Collection

Read requests are directly serviced through flash page read

operations once the address translation is completed. DFTL
maintains two blocks, namef@urrent Data BlockandCur-
rent Translation Blockwhere the data pages and translation

pages are written, respectively. Page-based mappings allow

sequential writes within these blocks, thus conforming to the
large-block sequential write specification [24]. For write re-
qguests, DFTL allocates the next available free page in the

Current Data Block, writes to it and then updates the map o

entry in the CMT.

However, as writes/updates propagate through the flash,
over a period of time the available physical blocks (in erased
state) decreases. DFTL maintains a high watermark called
GClinreshold, Which represents the limit till which writes are
allowed to be performed without incurring any overhead of

garbage collection for recycling the invalidated pages. Once o

GClinreshola 1S crossed, DFTL invokes the garbage collector.
Victim blocks are selected based on a simple cost-benefit
analysis that we adapt from [15].

Different steps are followed depending on whether the
victim is a translation block or a data block before return-
ing it to the free block pool after erasing it. If it is a trans-
lation block, then we copy the valid pages to the Current

Full Merge - Existing hybrid FTL schemes try to re-
duce the number of full merge operations to improve their
performance. DFTL, on the other hand, completely does
away with full merges. This is made possible by page-
level mappings which enable relocation of any logical
page to any physical page on flash while other hybrid
FTLs have to merge page-mapped log blocks with block-
mapped data blocks.

Partial Merge- DFTL utilizes page-level temporal local-
ity to store pages which are accessed together within same
physical blocks. This implicitly separates hot and cold
blocks as compared to LAST and Superblock schemes
[13, 20] which require special external mechanisms to
achieve the segregation. Thus, DFTL adapts more effi-
ciently to changing workload environment as compared
with existing hybrid FTL schemes.

Random Write Performance - As is clearly evident, it is

not necessarily the random writes which cause poor flash
device performance but the intrinsic shortcomings in the
design of hybrid FTLs which cause costly merges (full) on
log blocks during garbage collection. Since DFTL does
not require these expensive full-merges, it is able to im-
prove random write performance.

Block Utilization - In hybrid FTLs, only log blocks are
available for servicing update requests. This can lead to
low block utilization for workloads whose working-set
size is smaller than the flash size. Many data blocks will
remain un-utilized (hybrid FTLs have block-based map-
pings for data blocks) and unnecessary garbage collection
will be performed. DFTL solves this problem since up-
dates can be performed on any of the data blocks.

Translation Block and update the GTD. However, if the vic-
tim is a data block, we copy the valid pages to the Current . .
Data Block and update all the translation pages and CMT 4. TheFlashSm Simulator
entries associated with these pages. In order to reduce thdn order to study the performance implications of various
operational overhead, we utilize a combinatioteafy copy- FTL schemes, we develop a simulation framework for flash
ing and batch updatesinstead of updating the translation based storage systems called FlashSim. FlashSim is built by
pages on flash, we only update the CMT for those data pagesnhancing Disksim [5], a well-regarded disk drive simulator.
whose mappings are present in it. This techniqudaaf Disksim is an event-driven simulator which has been exten-
copyinghelps in delaying the proliferation of updates to flash sively used in different studies [8, 17] and validated with
till the corresponding mappings are evicted from SRAM. several disk models. FlashSim is designed with a modular
Moreover, multiple valid data pages in the victim may have architecture with the capability to model a holistic flash-
their virtual-to-physical address translations present in the based storage environment. It is able to simulate different
same translation-page. By combining all these modifications storage sub-system components including device drivers,
into a singlebatch updatewe reduce a number of redun- controllers, caches, flash devices, and various interconnects.
dant updates. The associated GTD entries are also updateth our integrated simulator, we add the basic infrastruc-
to reflect the changes. Owing to space constraints here, weture required for implementing the internal operations (page
present algorithms and specific examples for GC and overallread, page write, block erase etc.) of a flash-based device.
read/write operations in [7]. The core FTL engine is implemented to provide virtual-to-
) o . physical address translations along with a garbage collection

3.4 Comparison of Existing State-of-the-art FTLswith mechanism. Furthermore, we implement a multitude of FTL

DFTL schemes: (i) a block-based FTL scheme (replacement-block
Table 2 shows some of the salient features of different FTL FTL [1]), (ii) a state-of-the-art hybrid FTL (FAST [19]), (iii)
schemes. The DFTL architecture rovides some intrinsic ad- our page-based DFTL scheme and (iv) an idealized page-
vantages over existing state-of-the-art FTLs as follows: based FTL. This setup is used to study the impact of various



H ;ggfgﬁﬂi?t ‘ BAST [2] ‘ FAST [19] SuperBlock [13] LAST [20] ‘ DFTL ‘ Ideal Page FTL
FTL type Block Hybrid Hybrid Hybrid Hybrid Page Page
Mapping Block DB-Block DB-Block SB-Block LB/Blocks | DB/Sequential LB - Block Page Page
Granularity LB - Page LB-Page within SB-Page Random LB - Page
Division of Update 1 Sequential (m) Sequential-(M-m)
Blocks (M) ) ] + (M-1) Random ) (Hot and Cold)
Associativity of . . Random LB-(N:M-1) . Random LB-(N:M-m) i .
Blocks (Data:Update) (1K) (M) Sequential LB-1:1 SM) Sequential LB-(1:1) (N:N) (N:N)
Blocks available Replacement Log Log Log Log All Data All
for updates Blocks Blocks Blocks Blocks Blocks Blocks Blocks
Full Merge Yes Yes Yes Yes Yes No No

Table 2:FTL Schemes Classification. N: Number of Data Blocks, M: Number of Log Blocks, S: Number of Blocks in a Super Block, K:
Number of Replacement Blocks. DB: Data Block, LB: Log Block, SB: Super Block. In FAST and LAST FTLs, random log blocks can be
associated with multiple data blocks.

FTLs on flash device performance and more importantly on which is an ad-hoc, decision-support benchmark (OLAP

the components in the upper storage hierarchy. workload) examining large volumes of data to execute com-
plex database queries. Also, we use a read-dominant Web

5. Experimental Results Search engine trace [26] made available by SPC. Finally, we

51 Evaluation Setup also use a number of synthetic traces to study the behavior of

different FTL schemes for a wider range of workload char-

We simulate a large block 32GB NAND flash memory with e ristics than those exhibited by the above real traces.

specifications shown in Table 1. To conduct a fair compar-
ison of different FTL schemes, we consider only a portion Performance Metrics. The device service timés a good

of flash as thective regionwhich stores our test workloads. metric for estimating FTL performance since it captures
The remaining flash is assumed to contain cold data or freethe overheads due to both garbage collection and address
blocks which are not under consideration. We assume thetranslation. However, it does not include ttpgeuing delays
SRAM to be just sufficient to hold the address translations for requests pending in I/O driver queues. In this study, we
for FAST FTL. Since the actual SRAM size is not disclosed Uutilize both (i) indicators of the garbage collector’s efficacy
by device manufacturers, our estimate represents the mini-and (ii) response time as seen at the I/O driver (this is the
mum SRAM required for the functioning of a typical hybrid sum of the device service time and time spent waiting in the
FTL. We allocate extra space (approximately 3% of the total driver’s queue, we will call it thesystem response tiheo
active region [13]) for use as log-buffers by the hybrid FTL. characterize the behavior/performance of the FTLs. We use
a pure page-based FTL as @aselinescheme.

Workloads ‘ Avg.Req. | Read | Seq. | Avg. Req. Inter-arrival

_ Size (KB) | 06 | (%) Time (ms) 5.2 Analysisof Garbage Collection and Address
Financial [25] 4.38 9.0 2.0 133.50 .
Cello99 [10] 5.03 350 | 1.0 21.01 Transation Overheads
TPC-H[28 1282 | 950 | 180 15556
Web Sear[ch ][26] 1156 950 T 120 997 The garbage coII_ector may have t_o perform merge opera-
tions of various kinds (switch, partial, and full) while ser-
Table 3:Enterprise-Scale Workload Characteristics. vicing update requests. Recall that merge operations pose

overheads in the form of block erases. Additionally, merge
operations might induce copying of valid pages from victim

. . X blocks—a second kind of overhead. We report both these
traces to study the impact of different FTLs on a wide spec- . :
. .~ _overheads as well as the different kinds of merge opera-
trum of enterprise-scale workloads. Table 3 presents salient

. . tions in Figure 6 for our workloads. As expected from Sec-
features of our workloads. We employ a write-dominant I/O . . I
L . ) ..~ tion 3 and corroborated by the experiments shown in Fig-
trace from an OLTP application running at a financial in-

stitution [25] made available by the Storage Performance ure 6, rgad—domlnantworkloads (.TPC'H andweb Sgarch)—
Council (SPC), henceforth referred to as Higancial trace with Itlhe|r srgall per<|:|ent§\ge of wt:ne(;eqﬁesté—”eg;blt EUCh

’ : N . smaller garbage collection overheads than Cello99 or Finan-
We also experiment using Cello99 [10], which is a disk ac-

. ; . ...~ cial trace. The number of merge operations and block erases
cess trace collected from a time-sharing server exhibiting . .
o R : are so small for the highly read-dominant Web Search trace
significant writes; this server was running the HP-UX oper-

ating system at Hewlett-Packard Laboratories. We considerthat we do not show these in Figure 6.

two read-dominant workloads to help us assess the perfor-Switch Merges. Hybrid FTLs can perform switch merges
mance degradation, if any, suffered by DFTL in comparison only when the victim update block (selected by garbage col-
with other state-of-the-art FTL schemes due to its addresslector) contains valid data belonging to logically consecutive
translation overhead. For this purpose, we use TPC-H [28], pages. DFTL, on the other hand, with its page-based address

Workloads. We use a mixture of real-world and synthetic
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Figure 6:0verheads with different FTL schemes. We compare DFTL with FAST and Baseline for three workloads: Financial, Cello99, and
TPC-H. The overheads for the highly read-oriented Web Search workload are significantly smaller than others and we do not show them
here. In (c), Address Translation (Read) and Address Translation (Write) denote the extra read and write operations for address translations
required in DFTL, respectively. All extra read/write operations have been normalized with respect to FAST FTL scheme.

translation, does not have any such restriction. HeDEdL in our scheme as compared with FAST but also contributes
shows a higher number of switch merdeseven random-  in reducing the invocation of the garbage collector.

write dominant Financial trace as seen in Figure 6(a). Trandation and Valid Page Copying Overheads. DFTL

introduces some extra overheads due to its address transla-
! tion mechanism (due to missed mappings that need to be
08 brought into the SRAM from flash). Figure 6(c) shows the
normalized overhead (with respect to FAST FTL) from these
extra read and write operations along with the extra valid
pages required to be copied during garbage collection. Even

Cumulative Probability of Full Merges

02 - though the address translation accounts for approximately
] e 90% of the extra overhead in DFTL for most workloads,
0 . . .
O et o2 iocks baolved torul Mes overall it still performs less extra operations than FAST. For

example, DFTL yields a 3-fold reduction in extra read/write
Figure 7:Expensive full merge in FAST FTL. About 20% of full ~ OPerations over FAST for the Financial trace. Our evalua-
merges involve 20 data blocks or more for the Financial trace. tion supports the key insight behind DFTL, namely that the

temporal locality present in workloads helps keep this ad-

dress translation overhead small, i.e., most requests are ser-
Full Merges. As shown in Figure 7, with FAST, about viced from the mappings in SRAM. DFTL is able to utilize
20% of the full merges in the Financial trace involve 20 page-level temporal locality in workloads to reduce the valid
data blocks or more. This is because state-of-the-art hybridpage copying overhead since most hot blocks (data blocks
FTLs allow high associativity of log blocks with data blocks and translation blocks) contain invalid pages and are selected
while maintaining block-based mappings for data blocks, as victims by our garbage collector. In our experiments, we
thus requiring a costly operation of merging data pages in the observe about 63% hits for address translations in SRAM
victim log block with their corresponding data blocks (recall for the financial trace even with our conservatively chosen
Figure 3 in Section 2). For TPC-H, although DFTL shows SRAM size. In a later sub-section, we investigate how this
a higher number of total merges, its fine-grained addressingoverhead reduces further upon increasing the SRAM size.
enables it taeplace full merges with less expensive partial .
merges.With FAST as many as 60% of the full merges >3 PerformanceAnalysis
involve more than 20 data blocks. As we will observe later, Having seen the comparison of the overheads of garbage col-
this directly impacts FAST'’s overall performance. lection and address translation for different FTLs, we are

Figure 6(b) shows the higher number of block erases with now in a position to appreciate their impact on the perfor-

FAST as compared with DFTL for all our workloads. This mance offered by the flash device. The Cumulative Distribu-
can be directly attributed to the large number of data blocks tion Function of the average system response time for differ-
that need to be erased to complete the full merge operationent workloads is shown in Figure 8. DFTL is able to closely
in hybrid FTLs. Moreover, in hybrid FTLs only a small match the performance of Baseline scheme for the Financial
fraction of blocks (log blocks) are available as update blocks, and Cello99 traces. In case of the Financial trace, DFTL re-
whereas DFTL allows all blocks to be used for servicing duces the total number of block erases as well as the extra
update requests. This not only improves the block utilization page read/write operations by about 3 times. This results in
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0004 B T o B robust enough to sustain periods of increased I/O intensity,
Resoonse Time (ms) Response Time (ms) especially for write dominant workloads. In order to simu-
(c) TPC-H (d) Web-Search late such changing environment we use two synthetic work-

i ) o ) loads with varying characteristics: Workload A is predom-
Figure 8:Graphs show the Cqmulatlvg Distribution Function of inantly random write-dominant whereas Workload B has a
the average system response time for different FTL schemes. large number of sequential writes. With increasing request

arrival rate, the flash device transitions from@mal oper-
improved device service times and shorter queuing delaysational regionto anoverloaded region
which in turn improve the overall I/O system response time  As shown in Figure 9, for Workload A the transition into
by about 78% as compared to FAST. overloaded region is marked by very high gradient in re-
For Cello99, the improvementis much more dramatic be- sponse times pointing to the un-sustainability of such an en-
cause of the high 1/O intensity which increases the pending vironment using FAST. On the other hand, DFTL is not only
requests in the I/O driver queue, resulting in higher laten- able to provide improved performance in the operational re-
cies. We would like to point out that Cello99 represents only gion but is also able to sustain higher intensity of request
a point within a much larger enterprise-scale workload spec- arrivals. It providegjraceful degradatiomn performance to
trum for which the gains offered by DFTL are significantly sustained increase in I/O intensity, a behavior especially de-
large. More generally, DFTL is found to improve the average sirable in enterprise-scale systems. For sequential workload
response times of workloads with random writes with the de- B, the merge overhead is reduced because of higher number
gree of improvement varying with the workload’s properties. of switch merges as compared to full-merges. Thus, FAST is
For read-oriented workloads, DFTL incurs a larger addi- able to endure the increase in request arrival rate, much bet-
tional address translation overhead and its performance deder than its own performance with random-write dominant
viates from the Baseline (Figure 8(c) & (d)). Since FAST is workload A. However, we still observe better performance
able to avoid any merge operations in the Web search trace, itrom DFTL, which is able to approximate the performance
provides performance comparable to Baseline. However, for of Baseline scheme because of the availability of all blocks
TPC-H, it exhibits dong tail primarily because of the expen-  to service the update requests.
sive full merges and the consequent high latencies seen by ) i i
requests in the 1/O driver queue. Hence, even though FAST®-> Microscopic Analysis
services about 95% of the requests faster, it suffers from longIn this sub-section, we perform a microscopic analysis of the
latencies in the remaining requests, resulting in a higher av-impact of GC on instantaneous response times. Figure 10

erage system response time than DFTL. represents a same set of 100 consecutive requests being ser-
] ) viced by FAST and DFTL for the Financial trace. This re-
5.4 Exploring a Wider Range of Workload gion illustrates transition from a sustainable 1/0 intensity
Characteristics (operational region) to a period of very intense 1/Os (over-

We have seen the improvement in performance for different loaded region) in the Financial trace. As is clearly visible,
realistic workloads with DFTL as compared to state-of-the- FAST suffers from higher garbage collection overhead and
art FTLs. Here, we widen the spectrum of our investigation requests undergo higher latencies as compared to DFTL.
by varying one workload property, namely I/O request ar- Full merges cause a large number valid pages to be copied
rival intensity. An enterprise-scale FTL scheme should be and the corresponding blocks to be erased. This results in
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higher device service time for the request undergoing these .
operations. This in turn causes the pending requests in the Average Response Time
I/O driver queue to incur longer latencies. Thus, even though .* A
the device service time for these requests is small; the over-
all system response time increases. For example, in the tof £
highlighted region in Figure 10, request A undergoes full ~ °7
merge resulting in very high device service time. While A , .

is being serviced, the pending request B incurs high latency ¢ * “adtens ™ ™ B s e

in the I/O driver queue (spike in queueing time for B) which (a) Financial Trace (b) TPC-H Benchmark
increases its overall system response time. The same phe-

nomenon is visible for requests C and D. Thus, full merges Figure 11:Impact of SRAM size on DFTL. Response times have
not only impact the current requests but also increase thebeen normalized with respect to the Baseline FTL scheme. For both
overall service times for subsequent requests by increasingthe Financial trace and TPC-H, there is performance improvement
queuing delays. In sharp contrast, during the same period,With increased SRAM hit-ratio. However, beyond the working-
DFTL is able to keep garbage collection overhead low and set size of workl_oads there is no b_eneflt of additional SRAM for
provide sustained improved performance to the requests asaddress translation. The 99% confidence intervals are very small
it does not incur any such costly full merge operations. and hence not shown.
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56 Impact of SRAM size tio, reducing the address translation overhead in DFTL, and
All the experiments in the preceding subsections were donethus improving flash device performance. As expected, with
by utilizing the bare minimum amount of SRAM necessary the SRAM size approaching the working set size (SRAM hit
for implementing any state-of-the-art hybrid FTL scheme. ratio reaches 100%), DFTL's performance becomes compa-
Even with this constrained SRAM size, we have shown that rable to Baseline. Increasing SRAM size for holding address
DFTL outperforms the existing FTL schemes for most work- translations beyond the workload working-set size does not
loads. The presence of temporal locality in real workloads provide any tangible performance benefits. It would be more
reduces the address-translation overhead considerably. Figbeneficial to utilize this extra SRAM for caching popular
ure 11 shows the impact of increased available SRAM size read requests, buffering writes, etc. than for storing unused
on DFTL. As seen, greater SRAM size improves the hit ra- address translations.
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