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Gray level transformation to increase the density of 
interferometric fringes 

Mansour A. Ahmadshahi 

A gray level transformation is presented to simulate the interferometric process. The transformation uses 
properties of sinusoidal functions to produce rapidly varying intensities from those with nearly zero gradients. 
The transformation when used in conjunction with optical techniques, such as holographic interferometry, 
has the effect of increasing the optical sensitivity and producing a large number of fringes where otherwise 
only a fraction of a fringe would be observed. This technique is ideal for holographic analysis of deformations 
in microscopic regions. 

I. Introduction 

Optical techniques such as holographic interferome­
try are utilized as extremely sensitive and accurate full 
field methods to determine displacements and 
strains.l-' Numerous signal processing techniques 
have been developed to retrieve phase information 
from interferometric fringe patterns.v' As in the case 
of double exposure holography, once the fringes are 
formed and recorded on the holographic medium, be it 
emulsion or thermoplastic type, the recorded image is 
then routed to an image digitizer via a video camera 
where it is digitized and stored in a frame buffer for 
further analysis. 

The deformations producing the fringe pattern to­
.gether with the sensitivity ,.of the optical setup are 
ordinarily large enough to generate many fringes in the 
field of analysis. One of the most difficult and seem­
ingly unresolved aspects of accurate determination of 
deformations, however, occurs when the phase varia­
tion in the field of analysis is less than a complete cycle. 
This is because, in almost all circumstances, extraction 
of phase information from signals (be it analog or 
digital) containing low frequency components is sub­
ject to large errors. This problem was studied thor­
oughly in Ref. 5, and it was determined that its solution 
requires generating an auxiliary system of carrier 

The author is with University of California, San Diego, Depart­
ment of Applied Mechanics & Engineering Sciences, Center of Ex­
cellence for Advanced Materials, La Jolla, California 92093. 

Received 1 March 1990.
 
0003-6935/91/172382-04$05.00/0.
 
© 1991 Optical Society of America.
 

2382 APPLIED OPTICS I Vol. 30, No. 17 I 10 June 1991 

fringes by optical means, and thus shifting the phase 
information to a higher frequency, that of the carrier 
fringes. The small perturbations of the phase of the 
carrier fringes can now be accurately detected by the 
use of FIR linear phase filters" and the appropriate 
techniques such as those outlined in Ref. 5. 

In the present work we discuss a gray level transfor­
mation that can be applied to the recorded intensity 
variation that mimics the formation of fringes in opti­
cal processes. The transformation can be implement­
ed on an image processor as the first stage of image 
acquisition, provided that the recorded holographic 
interferometric intensity has been optically filtered so 
that it does not contain a speckle pattern. If, however, 
the fringe pattern suffers from random intensity varia­
tion of speckle, the transformation can be applied in 
the second stage of image acquisition, after the fringe 
pattern has been numerically filtered. 

It should be noted that, although the transformation 
is intended to be applied on interferometric images, it 
is not limited to them. It can be used to detect minute 
intensity changes, bothqualitatively and quantitative­
ly, since, as is shown, the transformed images are sinus­
oidal in form and numerous signal processing algo­
rithms have been developed to process these types of 
image. 

II. Formation of Holographic Interferometric Fringes 

In a typical off-axis two-beam holographic moire 
setup? (see Fig. 1), the object is illuminated by two 
symmetric collimated beams, each making an angle a 
with the normal of the object plane. The scattered 
waves emanating from the object together with the 
collimated reference beam are then collected on the 
holographic plate, and a first exposure is taken. After 
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Fig. 1. Schematic representation of a typical off-axis two-beam 
holographic moire setup. 

deformation of the object, a second exposure is taken 
and the resulting intensity variation can be written as 

I(x,y) = B(x,y) + C(x,y) cos[ku(x,y)], (1) 

where 

k=411"sina, (2)
A 

and it is the sen~itivityof the optical setup, Abeing the 
wavelength of light, The spatially varying functions. 
B(x,y) and C(x,y) determine the background and the 
'contrast of the image, respectively. 

Accordingly, an alternative form of Eq. (1) can be 
generated by stepping the phase of the reference beam 
by 1r/2, and thus producing an in-quadrature signal as 

H(x,y) = B(x,y) + C(x,y) sin[ku(x,y)]. (3) 

In fact, there are numerous numerical" and optical" 
techniques to generate signals of the forms in Eqs. (1) 
and (3). In Ref. 8, for example, the method involves 
obtaining three interferograms, using a CCD array 
that have phase differences of 1r/2 and 1r, such that the; 
facilitate the decoupling of the background function 
B(x,y) and the amplitude term C(x,y). It is therefore 
possible to normalize, say, Eq. (3), and obtain a digital 
image of the form I 

q(x,y) = All + sin[ku(x,y)Jl, (4) 

where A is a constant and is one-half of the maximum 
gray level of the digitized image. If, for example an 8­
bit digitizer is used, the value of A would be 255i2. 

III. Gray Level Transformation 

There are numerous gray level transformations in 
the literature which are designed to enhance the gradi­
ents of the recorded intensities. One of the closely 
related algorithms is the well-known sawtooth gray 
scale transformation," where equidistant gray levels 
are stretched linearly from 0 to 255 (assuming an 8-bit 
digitizer), enhancing the gradients throughout the im­
age. Here, we use a sinusoidal gray scale transforma­
tion, which converts constant levels of intensities into 
minima of a sinusoidally varying intensity. 

One of the intrinsic properties of the holographic 
interferometry process is that the changes of the path 
length of light are tremendously amplified ~s they 

become the. argument of a sinusoidal function [see Eq. 
(4)]. In this equation, u(x,y), a component of the in­
plane defo.rmation, is actually the change in the path 
length of hght traveled from some arbitrary datum to 
the recording medium. It is constructive to interpret 
·Eq. (4) as the ~ransformof the deformation u(x,y). In 
this way, a pair of transforms can be written as 

M~,A[ ] = All + cosw[ ]1, (5) 

M~,A[ ] = A{l +sinw[ JI. (6) 

By looking at interferometric fringes as the transforms 
of small path length changes of light, the above trans­
formations can be simulated and operated on digitized 
intensities to mimic the process that takes place opti­
cally. ~t is such.a transformation that produces rapid­
ly varying functions from those with nearly zero gradi­
ents. A table of gray scale transformations can be 
made and loaded. onto the lookup table of an image 
processor. In this way, a transformed image can be 
r~corded whose intensity gradients are greatly ampli­
fied, 

To illustrate the proposed algorithm we consider 
the application of this gray scale transfor~ationtothe 
intensity distributions of two objects emanating 
lightwaves of completely different natures. Their dig­
itized intensity variations have been transformed ac­
cording to Eqs. (5) and (6). While the first example is 
o~ly a dem?nstrative one, the second example deals 
WIth detecting extremely small deformations of a cir­
cular disk under diametrical compression. 

Figu~e 2.shows the digitized image of a Ping-Pong 
ball being Illuminated by the ceiling light. Figures 3 
and 4 sho~ the transformed versions of the same image 
when the Input lookup table of the image processor was 
loaded according to Eqs. (5) and (6), respectively. The 
contours of constant intensity are clearly evident in 
these figures. Here, we have chosen the parameters A 
= 127.5 and w = 21r~/255, with ~ being equal to 8. This 
parameter determines the number of fringes that are 
produced in a region whose intensity changes from 0 to 
255. For example, a line of 256 pixels whose intensity 
changes linearly from 0 to 255, can be transformed to 
modulate sinusoidally with the maximum number of 
oscillations being 128. Since there are only 256 dis­
crete gray levels, a sinusoidal transformation can only 
generate 128 distinct levels of gray. One must also 
oonsider tha~ the number of fringes generated by this 
transformation does not exceed the maximum number 
of ~rin~es t~a~ c~ be proper~y represented in a given 
region If aliasing IS to be avoided, It is therefore rec­
ommended that low values of ~ be used at first and then 
gradually increased. 

The second example describes the feasibility of the 
use of this transformation to increase the density of . 
fringes ob~aine~ in a~y interferometry process. Sup­
pose that In a given field of analysis the deformations 
are so small that the change in phase is only a fraction 
of a cycle and that the image has been optically or 
numerically, normalized as ' 

I(x,y) = All + sin[ku(x,y)Jl, (7) 
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Fig. 2. Intensity variation of a Ping-Pong ball illuminated by white 
light. 

Fig. 3.-Transformed intensity variation of Fig. 2. using Eq. (5) with 
~ = 8. 

Fig. 4. Transformed intensity variation of Fig. 2. using Eq, (6) with 
~= 8. 

where A is a constant and is the de level of the digitized 
image, and k is also a constant and is the sensitivity of 
the optics. If the argument of the sine function is 
small, say, less than 71"/6, it can be written as 

~~=~+~~~~ W 
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Fig. 5. TV holographic moire fringe pattern of a circular disk under 
a small diametrical compressive load. 

The error introduced by replacing the sine function 
with its argument up to this range is <5%. Applying 
one of the transformation, say, Eq. (6) or Eq. (8), 
produces the following intensity distribution: 

q(x,Y) =M:,A[I(x,y)] 

= All + sin[wI(x,Y)]l 

= All + sin[wA + wAku(x,Y)Il. (9) 

Except for an inconsequential phase change, wA, Eq. 
(9) resembles the intensity variation ofEq. (7), but the 
sensitivity factor has been amplified by the factor wA. 

Figure 5 shows the holographic moire fringe pattern 
of a circular disk under a small diametrical load ob­
tained by the TV holography technique. The speci­
men is made out of stainless steel with E =30 X 106 psi 
and v =0.3. The diameter of the disk is 3.8em (1.5in.) 
and its thickness is 0.64 cm (0.25 in.) It is loaded 
vertically using a computer-controlled Instron ma­
chine. Under load feedback control, a load of 20 ± 1Ib­
was applied. The optical setup was such that the 
corresponding double illumination angles a, shown in 
Fig. 1, were equal to 45°. An argon laser of A=514nm 
was used as the light source. Because of symmetry, 
only the first quadrant of the disk was analyzed. As 
can be seen in Fig. 5, the image is greatly corrupted by 
the presence of speckle. This image was filtered by 2­
D and 1-D FIR linear phase low pass filters to remove 
the random intensity changes of the speckle pattern. 
A composite image of the processed experimental re­
sults, together-with the theoretical fringe pattern, is 
shown in Fig. 6. The contrast is assumed to be unity 
and the de level A ofEq. (4) was calculated by comput­
ing the average intensity over the circular region before 
loading, and a value of 250was obtained. These values 
were used when generating the theoretical segment of 
the image in Fig. 6. Figure 7 shows the transformed 
images of Fig. 6whenEq. (5) is used with A =255and w 

has values of 271"~/250 with ~ =8 and ~ =32. It can be 
seen that by applying the transformation we have gen­
erated high density fringe patterns of an initial image 



Fig. 6. Fractional fringe patterns: top represents the experimen­
tal fringe pattern after removal of speckle noise; bottom represents 

the theoretical solution. 

Fig 7. Artificial fringes generated by applying the transformation 
of Eq. (6) on the image shown in Fig. 6. The first and second 
quadrants show the experimental results for ~ = 32 and ~ = 8, 
respectively. The third and fourth quadrants show the theoretical 

results for ~ = 8 and ~ i 32, respectively. 

(Fig. 6) whose phase variation is only a fraction of a 
cycle throughout the field. 

IV. Conclusions 

A gray level transformation has been developed that 
mimics the Interferometry process. The property of 
this transformation is that it amplifies the gradients in 
the intensity distribution of an image. A distinct ad­

vantage of this transformation is that the transformed 
intensities are in the form of sinusoidal functions, 
which are readily understood, and whose digital pro­
cessing is thoroughly formulated. Two examples have 
been given to demonstrate the applicability of the 
.algorithm. The first example has been given with the 
intent of familiarizing the reader with the transforma­
tion. The second example has been given to obtain 
high density fringe patterns from the recorded inter­
ferogram of a circular disk under an extremely small 
compressive load using the TV holography technique. 
The results have been compared with the theoretical 
solution and good agreement has been shown to exist, 
verifying the validity and the applicability of the 
transformation. 
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