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Abstract

With public cloud providers poised to become indispens-
able utility providers, neutrality-related mandates will
likely emerge to ensure a level playing field among their
customers (“tenants”). We analogize with net neutrality
to discuss: (i) what form cloud neutrality might take, (ii)
what lessons might the net neutrality debate have to offer,
and (iii) in what ways cloud neutrality would be differ-
ent from (and even more difficult than) net neutrality. We
use idealized thought experiments and simple workload
case studies to illustrate our points and conclude with a
discussion of challenges and future directions. Our paper
points to a rich and important area for future work.

1 Introduction

A natural but relatively little addressed set of concerns in
the emerging public cloud utility comes to the fore when
one compares its likely evolution with that of Internet
Service Providers (ISPs). During the period of commer-
cialization of the Internet in the 1990s (after the creation
of the WWW), the principle of over-engineering reigned
and cheap access plans without quotas were common-
place. In the 2000s, the Internet access marketplace ma-
tured, ISPs consolidated, and it became apparent that
the Internet was (i) prone to congestion by activity that
generated little revenue!, and (ii) created a platform for
stiff competition for the ISPs’ own profitable “managed”
video and voice services.

The network neutrality debate began when Com-
cast throttled BitTorrent activity that was congesting its
(broadcast-based CMTS) residential broadband service.
Though this violation of application neutrality targeted
activity that was largely piracy of copyrighted mate-
rial, third-party content and service providers viewed
it as a dangerous precedent considering that ISPs are
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'In the case of illegal file-sharing, negative revenue from the point
of view of copyright holders.

themselves competing providers of content (particularly
video) and services (e.g., telephony). In 2014, Neflix ne-
gotiated payment for “fastlanes” to reach Comcast’s sub-
scribers [32], but this would have basically been a side
payment (albeit willing), thus violating origin neutral-
ity. The debate continues: a federal court limited certain
of the FCC’s neutrality rules in 2014 [31] and the FCC
deemed the Internet a utility in 2015 [25] in a move to
consolidate neutrality rules.

Somewhat similarly, the public cloud market was also
plentiful initially compared to demand. As the business
has grown over the last decade, competition has inten-
sified with an increased diversification in the types of
offered service-level agreements (SLAs) and associated
price-performance trade-offs [4, 30, 8, 19, 13]. It is rea-
sonable to anticipate that issues of fair competition sim-
ilar to those for ISPs may be on the horizon. As an il-
lustrative example, consider how Amazon Prime’s video
service and Netflix both use Amazon EC2.

What might neutrality mean in this setting? Do lessons
and challenges from net neutrality suffice or does the
public cloud raise novel issues? We believe the answer
is that it does and this is the context of our paper.
Contributions and Outline: In Section 2.1, we identify
several ideas and lessons from the net neutrality debate
that offer useful starting points for discussing cloud neu-
trality. A public cloud is, however, a significantly dif-
ferent resource provider than an ISP. In fact, it is signifi-
cantly more complicated in some ways, presenting novel
concerns that we discuss in Section 2.2. Following this,
in Section 3, we take preliminary steps towards exploring
these issues using simple thought experiments and em-
pirical case studies. Finally, we conclude in Section 5.

2 Background and Related Work

Discussion on public cloud neutrality is relatively scant
or preliminary [24]. Interxion, a European provider de-
fines a carrier- and cloud-neutral “colo” data center as
follows: “A truly neutral data centre provider is one that



is independent of the companies colocating in the data
centre, does not compete with them in any way, and of-
fers no packaged services as part of colocation. Cus-
tomers are free to contract directly with the providers
of their choice” [1]. Our interest herein is with pub-
lic cloud providers that offer more general services than
colos (TaaS clouds offering virtualized IT resources or
PaaS/SaaS clouds offering even more abstract services),
for which the neutrality discussion is much more com-
plex and unclear.

2.1 Lessons from Net Neutrality

The following insights and guiding principles from the
net neutrality debate offer good starting points for our
discussion of cloud neutrality.

Resource congestion: If a utility provider can offer
adequate resources to satisfy its customers - especially
when it is in its initial growing phase e.g. ISPs in the 90s
or public clouds till very recently - the neutrality concern
is moot. Resource congestion, whether actual or alleged,
is the basic context of any neutrality debate.

Neutrality modulo SLAs: Neutrality does not mean
that every tenant is treated equally. The fair/equal treat-
ment across tenants may only relate to tenants that have
chosen identical SLAs. Therefore, it only ever makes
sense to discuss neutrality in the context of specific
SLAs. In other words, a key aspect of a provider’s re-
source allocation when assessing its neutrality is how it
allocates any discretionary resources (i.e., resources left
over after it has met its SLA obligations) among tenants
in the same SLA class. This view will play an important
point in our case studies in Section 4.

Information limits and preferences: The providers be-
havior must not be based on “inside information” or
“preferences.” E.g., Mogul et al. [22] consider a network
bandwidth allocation problem wherein a cloud provider
reckons tenant sensitivity to network bandwidth under-
provisioning and uses this to allocate bandwidth differ-
entially to improve its profits. One may consider such a
cloud provider non-neutral.

Fair competition: Fair competition needs to be upheld
between affiliates of the cloud provider and its tenants -
whether direct (e.g. recall from Section 1 how Amazon
Prime and Neftlix both use Amazon EC2) or indirect.
That is, neutrality is related to antitrust.

2.2 Why Cloud Neutrality is Different

Whereas ideas discussed above are useful in framing
our cloud neutrality discussion, we believe that there are
aspects of cloud operation that make for a more com-
plicated situation than net neutrality. We find two key
sources of difficulty:

Lack of an effective common “currency”: Unlike net-
work bandwidth, the basis of SLAs in the case of net

neutrality, it is difficult to identify a single (virtual) re-
source/currency that can act as an effective proxy for the
multiple physical resources that must be allocated for co-
located tenants. Different workloads need different re-
sources and even within a workload this could change
over time. It is not clear how neutrality should be defined
in such a multi-resource setting. Existing literature on
multi-resource fair scheduling offers one appealing op-
tion and we explore this in Section 3.

Difficulty of auditing resource usage: Animportant re-
quirement for implementing a neutral utility is the ability
to audit resource allocations/usage for verifying adher-
ence to neutral behavior. Whereas network bandwidth
allocated by an ISP can be effectively monitored and au-
dited [16, 17], the same does not hold for many virtual-
ized resources offered by a public cloud. As identified
by others [23, 29, 2, 3], auditing virtualized resources
is inherently difficult. Existing solutions for measur-
ing/auditing virtualized IT resource usage (e.g., resource
containers [6]) implicitly assume trusted resource man-
agers. A hypervisor may over-commit CPUs to multi-
ple VMs, which makes it difficult to detect/quantify each
VM’s shares of CPU capacity (CPU cycles) from within
the guest OS. As an extreme example, a hypervisor may
“dilate” a VM’s notion of time by slowing its delivery
of virtualized timer interrupts [15]. Netflix relies upon
the “stolen time” (a measure of competition for CPU)
reported by the hypervisor underlying its Amazon EC2
instances for identifying incidents wherein its procured
instances are not getting adequate CPU capacity [20].
What if the hypervisor (either deliberately or due to a
bug) misreported this metric? Similar difficulties apply
to other resources such as memory and IO bandwidth.
Implementing cloud neutrality would require effective
solutions to this auditing problem.Our discussion in the
rest of the paper assumes the existence of such solutions.

3 Towards a Definition of Cloud Neutrality

The notion of fair scheduling is a natural starting point
for formalizing neutral resource management. Given the
information limits inherent in neutrality as well as the
general difficulty of application performance modeling
by a cloud provider (even by the tenant, i.e., the appli-
cation owner), we believe that SLAs in a neutral cloud
would have to be in terms of effective resource capacities
not in terms of application-specific performance metrics
(e.g., [18, 26] for the latter). In multi-resource environ-
ments, a generalization of max-min fairness, Dominant
Resource Fairness (DRF), can determine resource allo-
cations to a user based on its maximum weighted share
among its received resources. DRF maximizes the min-
imum dominant share of all users and has several desir-
able properties, e.g., sharing incentive, strategy proof-
ness, Pareto efficiency [12]. There are other fair allo-



cation policies for multiple resources, e.g., Competitive
Equilibrium from Equal Incomes (CEEI), that possess
some of these desirably properties. In the following, we
assume an SLA class is characterized by a determinis-
tic guaranteed element in combination with a statistical
(possibly best effort) element. Our SLA class defini-
tion is fairly general and expressive. E.g., on-demand
instances offered by Amazon EC2 or Google Compute
Engine amount to SLAs with guaranteed resource capac-
ities (the advertised capacities) whereas EC2’s burstable
or spot instances or Google’s preemptible instances can
be thought of as having different degrees of guaranteed
plus best-effort resource capacities [5, 7, 14].

3.1 SLAs with Deterministic Guarantees

When costs are low, tenant demand will exceed available
resources. We assume that the tenants will contend for
guaranteed (on-demand) resources, as stipulated in their
SLAs, and the cloud will arbitrate. For all tenants i, con-
sider linear models of their net-benefit/utility functions
based on workload intensity x, as set by the cloud, lead-
ing to assumed positive linear tenant net-utilities as fol-
lows: u;(x;) :=x;(V; — de,')klsk), where: V; is the benefit
per unit workload, B, is the cost per unit resource of type
k (e.g., P.=1 /Ry, for kind of asset fairness [12] where
Ry is the amount of type-k resource available), and d; is
the type-k resource demand per unit workload. Consider
tenants [ with linear net-utilities,

Vi, 8,~u,~ = Vi_zdi,kﬁk > 0.
k

The resulting game will result in a set of Nash equilibria’
on the feasibility boundary where at least one resource is
exhausted by tenants?.

As in Nash bargaining problems, there is a choice
of boundary equilibria. A leader of the game (opera-
tor/provider of the cloud itself, or a government/market
regulator) may desire equilibrium points that, e.g., maxi-
mize: cloud revenue, Q: =Y, x; Y d,'ykf’k; social welfare,
Q :=Y,u;(x); or total tenants’ benefit, Q := Y, Vix;.

To such ends, resources may be shifted among tenants
to control their Nash equilibrium, i.e., the cloud takes
direct resource allocation actions at or near the feasibility
region (as in the CEEI mechanism [12]). Note that the
three previous example objectives are planar. They result
in Nash play-actions x with maximal Q corresponding to
corner points or line segments of the feasibility region,

2 A Nash equilibrium x* = {x;} is a stalemate from which no single
tenant / can improve their utility ; by changing their workload to x; #
X7, i.e., any unilateral defection from a Nash equilibrium will not profit
the defector.

3 At the convex feasibility boundary with at least one resource ex-
hausted, the only feasible unilateral move by any player i is to re-
duce demand (x;), hence utility u; = x;d;u; is reduced if, as assumed,
marginal utility du; > 0 for all tenants j.

recall the simplex algorithm [27]. Also note that a for-
profit cloud with congested (low priced) resources would
naturally choose to maximize revenue.

Alternatively, resources x can be (maximally) al-
located subject to rules of “fairness” [9]. For ex-
ample, equal dominant resource share, x;maxyd; /Ry
(leading to DRF) [12]; equal total asset-fraction share,
X Y dik /Ry (leading to a kind of asset fairness); or equal
per unit net utility, x;/(V; — i di xP)-

Note that notions of fairness may not separately con-
sider the interests of the cloud and tenants particularly in
a public, for-profit cloud setting with potentially com-
peting tenants (possibly serving their own customers).
Also, tenants can be differently weighted (as considered
in e.g., Sec. 4.3 of [12]); such weights could correspond
to priority in a private cloud or enterprise network, or
willingness to pay in a public cloud system.

See Figure 1 for an illustrative example indicating
DRF and maximum cloud revenue with: total resource
pool R = (9 CPUs,6GB RAM) and tenant demand vec-
tors d; = (1,2),d, = (3,1). For DREF, the dominant re-
source shares x; maxy d; x /Ry of the two tenants i € {1,2}
are equated - in this case, x12/6 = x23/9, i.e., x| = x5.
But with B, = 1/Ry, Q = (2 + )x1 + (1 + 3)xo.

X max feasible revenue Q = (4/9)x, +(1/2)x, -———-
X=X, for dominant resource fairness SRR
X, = workload for tenant k
6 -
L 2X1 4%, =6 Max Q point
- : DRF point
feasibility region
X1 +3%, =9, i.e., d; , X,+d,, X,=R,
t y t X
/ 3 Moo 9 1

Figure 1: Illustrative example indicating DRF
and max total tenant valuation objectives.

Here, the DRF point is arguably a more “neutral” way
(than maximum cloud revenue) to treat this congested
scenario of tenants consuming resources with resource
proportions stipulated in their SLAs.

3.2 SLA with Statistical Guarantees

Now suppose that the tenants opt for cheaper SLAs in-
volving only statistical resource guarantees. In partic-
ular, this means that the cloud may exploit unused re-
sources nominally assigned to one tenant for the bene-
fit of other tenants, including to overbook resources to
take advantage of statistical multiplexing. Moreover, the
cloud may have discretionary (unreserved) resources that
it may assign to tenants. Again, the assumption is that
actual tenant demand will exhaust resources.



Now let m;; = Ed; s and ofi’k = var(d; ) respectively
be the mean and variance of the demand per unit work-
load d; 4 for the k'™ resource by the i tenant. Also, let
Gf ik be the covariance of demand per unit workload by
tenant i and tenant j for resource k£ and define the co-
variance matrix Cy = [ij7k]. In practice, these quanti-
ties would be empirically estimated online. We can ex-
tend our model of resource allocation by using nonlin-
ear “chance constraints” for each resource k, leading to a

convex feasibility region?,
Imy+n/¥Cx < R < Ry, )

where n; > 1 is a confidence factor for the headroom
Ry — Ry (e.g., [10]) corresponding to P(Y;x;d;x > R}) <
€&, and for all k, x; > 0 of course. Run-time estimates of
mean, variance and covariance of demand and dynamic
calibration of resource headroom can be jointly used to
deal with uncertain, time-varying demand needs, partic-
ularly when infeasible overages in demand must be rare
(& < 1). Headroom will be important in the presence
of estimation error in these statistical parameters of de-
mand.
If we take (conservatively with n, = 2) deterministic

dix = mip+no;;; (2)

(quantities that could be involved in tenant i’s SLA with
the cloud), we can then define statistical multiplexing
gain for resource k at demand x as

Nk inffi,i,k —VXCx | =0,

1

i.e., capturing the difference between “deterministic”
provisioning by the cloud using (2) and that using (1).

See Figure 2 for an example uncorrelated case with
ny =2 and 0;;; = 0.5. For resource k = 1 with capacity
8,di1=24+2-05=3anddr; =1+2-0.5=2. Sim-
ilarly, di» = 2 and dp» = 3 for the resource k = 2 with
capacity 11. The corresponding feasibility region, with
piecewise linear boundary x, = min{(8 —3x;)/2, (11—
2x1)/3}, is contained in that given by the chance con-
straints, with shown strictly concave boundary meeting
the piecewise linear boundary at the axes.

In practice, it can be reckoned at run-time (online)
whether different workloads are negatively correlated, or
whether statistical multiplexing gains can be achieved by
scaling a given workload [21, 28]. A basic assumption
here is that workloads are sufficiently stationary so that
present estimates of correlation are valid in the near fu-
ture. Moreover, correlations need to be assessed jointly

“#Recall that covariance matrices are always positive semi-definite
with positive diagonal entries. Using the fact that covariance matrices
are also symmetric, convexity of the feasibility region is a direct conse-
quence of the Cauchy-Schwarz inequality, and that the intersection of
convex regions (one for each resource k) is convex.

feasibility region boundary without stat mu

feasibility region boundary with stat mux

S

K. 2x; + x, + 2,/(0.5x,)7+(05%,)?= 8 =R,

s x1 + 2x3 + 24/(0.5x;)2+(0.5x)?= 11 =R,

2X+X:=8
ie. d; xptdy x=R

workload of container 1

Figure 2: [Illustrative example of chance-
constrained feasibility region with uncorrelated
resource demands.

Table 1: Tenants’ latency (norm. against individual tenant’s
acceptable latency). The ratios imply the relative discretionary
DRAM allocations for the two tenants.

CFS 3:7 CFS 1:1 Resv 1:1
95-th | avg | 95-th | avg | 95-th | avg
Tenant 1 | 413 315 | 436 304 | 417 241
Tenant 2 | 389 265 | 410 311 | 429 305

among the plurality IT resources used by the work-
loads in question. Note that a cloud assesses and ex-
ploits workload correlations to overbook under resource-
oriented, not performance-oriented, SLAs.

4 Illustrative numerical results for individ-
ual resources

We consider two memcached tenants whose CPU and
memory needs we manipulate to illustrate neutrality is-
sues under different representative cloud resource man-
agement options.

4.1 CPU Case Stud

Each tenant runs Memcaczed, an in-memory key-value
data store, with workload generated by YCSB [11] in
time-varying fashion according to i.i.d. Gaussian pro-
cesses with identical mean but the variation of tenant 2 is
double that of tenant 1. The tenants have the same SLAs
corresponding to one guaranteed core, and the cloud has
a discretionary third core that it can share between the
two tenants. Empirically, we found that a single core can
achieve throughput of 75k ops/s with satisfactory mean

Table 2: Latency of tenants for different allocation of discre-
tionary CPU, uncorrelated demand scenario.

CFS 3:7 CFS 1:1 Resv 1:1
95-th | avg | 95-th | avg | 95-th | avg
Tenant 1 | 484 318 | 449 382 | 451 365
Tenant2 | 418 254 | 435 284 | 444 299
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Figure 3: CDF of memcached
throughput conditioned on > 75k ops/s.

response times of 400us. Figure 3 shows the CDF of the
throughputs of the two tenants conditioned on each of
them being greater than 75k ops/s, i.e., emulating a case
where the third discretionary core is active when both
tenants have exhausted their respective dedicated cores.

The cloud may employ a weighted reservation (Resv)
based approach or a work-conserving, proportional-share
(CFS) scheduling for the discretionary third core. The
Resvl:1 (equally weighted) and CFS1:1 schemes are ar-
guably neutral as they are based only on parameters in
the tenant SLAs, i.e., the same mean demands in this
example corresponding to a single core; while CFS 3:7
is based on measured (conditional) demand-variation of
the two tenants which is not part of their SLAs and so
this scheme is arguably not neutral. If the intention is
to prevent tenant 2 (the one with more demand varia-
tion) from defecting to other cloud-services providers,
the cloud may tend to adopt CFS1:1. On the other hand,
the cloud may want to entice tenant 2 to renegotiate a
more costly SLA by adopting Resv1:1. The premise here
is that with greater demand variability, tenant 2 will out-
compete tenant 1 for the discretionary CPU core; but this
may not be entirely the case when the tenant demands are
positively correlated, i.e., how workload is consolidated
by the cloud will impact such “iso-neutral” decision-
making. In Tables 1,2, the more demand-variable ten-
ant 2 has best latency performance (both in mean and 95
percentile) under non-neutral CFS 3:7. Note that there is
improved 95-percentile latency performance for tenant
2 under CFS1:1 over Resvl:1 but not for mean latency
- this is attributable to simulated positive correlation in
tenant demand for the results of Table 1. For the un-
correlated case, tenant 2 has incremental decrease in its
latency from Resvl1:1 to CFS3:7, both in mean and 95-
percentile.

4.2 Memory Case Study

To illustrate neutrality concerns using memory as the re-
source, we create identical maximum memory needs for
our two Memcached tenants. Tenant 1 has exponential
key popularity distribution: 95% requests go to 5% of

8.5 06 07 08 09 1
Norm. allocated RAM capacity

5 06 07 08 09 P
Norm. allocated RAM capacity

Figure 4: Memcached performance as a function of allocated memory (norm.
against workingset size).

working set; tenant 2 has Zipfian key popularity distri-
bution. We assume that they both pick an SLA wherein
3 GB RAM capacity is guaranteed (50% of the working
set) and they both stipulate their maximum needs of 6
GB. However, tenant 1 has a much smaller set of pop-
ular data (“hot” data) than tenant 2, making it far less
sensitive to memory underprovisioning by the cloud (as
shown in Figure 4). We compare tenant performance un-
der two different memory allocation strategies the cloud
may employ in Table 3: Under neutral underprovision-
ing, the cloud provider may not exploit its understand-
ing of these different sensitivities to differentially allo-
cate memory to the tenants whereas in a non-neutral sce-
nario, it may underprovision tenant 1 far more aggres-
sively (without any perceived performance difference by
tenant 1) to reduce its own operational costs.

Table 3: Latency (norm. against the target latency of individ-
ual tenant) of tenants for different allocation of discretionary
DRAM capacity. The ratios imply the relative discretionary
DRAM allocations for the two tenants.

Non-neutral (0.4:0.6) | Neutral (1:1)
95-th avg 95-th | avg
Tenant 1 | 0.97 0.68 0.96 | 0.66
Tenant2 | 1.01 0.83 0.99 | 091

5 Conclusions

We identified novel challenges that would arise in a fu-
ture neutral public cloud. We identified four lessons
from the net neutrality debate that offer a good start-
ing point for discussion about cloud neutrality. We then
identified two particular aspects of cloud neutrality that
would require novel thought and debate. Using simple
thought experiments, we considered whether notions of
multi-resource fairness such as DRF are useful ways of
defining cloud neutrality. Finally, we created simple case
studies with different types of resource management and
discussed how these mapped to our notions of neutrality
and the implications on the provider’s profitability and
the tenant’s costs.
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