
vPath: Precise Discovery of Request Processing Paths from Black-Box
Observations of Thread and Network Activities

Byung Chul Tak∗, Chunqiang Tang†, Chun Zhang†,
Sriram Govindan∗, Bhuvan Urgaonkar∗, and Rong N. Chang†

∗Dept. of Computer Science and Engineering, Pennsylvania State University
† IBM T.J. Watson Research Center

Abstract

Discovering end-to-end request-processing paths is
crucial in many modern IT environments for reasons
varying from debugging and bottleneck analysis to
billing and auditing. Existing solutions for this problem
fall into two broad categories: statistical inference and
intrusive instrumentation. The statistical approaches in-
fer request-processing paths in a “most likely” way and
their accuracy degrades as the workload increases. The
instrumentation approaches can be accurate, but they are
system dependent as they require knowledge (and often
source code) of the application as well as time and effort
from skilled programmers.

We have developed a discovery technique calledvPath
that overcomes these shortcomings. Unlike techniques
using statistical inference, vPath provides precise path
discovery, by monitoring thread and network activities
and reasoning about their causality. Unlike techniques
using intrusive instrumentation, vPath is implemented
in a virtual machine monitor, making it agnostic of the
overlying middleware or application. Our evaluation us-
ing a diverse set of applications (TPC-W, RUBiS, Me-
diaWiki, and the home-grown vApp) written in differ-
ent programming languages (C, Java, and PHP) demon-
strates the generality and accuracy of vPath as well as its
low overhead. For example, turning on vPath affects the
throughput and response time of TPC-W by only 6%.

1 Introduction

The increasing complexity of IT systems is well docu-
mented [3, 8, 28]. As a legacy system evolves over time,
existing software may be upgraded, new applications and
hardware may be added, and server allocations may be
changed. A complex IT system typically includes hard-
ware and software from multiple vendors. Administra-
tors often struggle with the complexity of and pace of
changes to their systems.

This problem is further exacerbated by the much-
touted IT system “agility,” including dynamic appli-
cation placement [29], live migration of virtual ma-

chines [10], and flexible software composition through
Service-Oriented Architecture (SOA) [11]. Agility pro-
motes the value of IT, but makes it even harder to know
exactly how a user request travels through distributed IT
components. For instance, was serverX in a cluster ac-
tually involved in processing a given request? Was a fail-
ure caused by componentY or Z? How many database
queries were used to form a response? How much time
was spent on each involved component? Lack of visibil-
ity into the system can be a major obstacle for accurate
problem determination, capacity planning, billing, and
auditing.

We use the term,request-processing path, to represent
all activities starting from when a user request is received
at the front tier, until the final response is sent back to the
user. A request-processing path may comprise multiple
messages exchanged between distributed software com-
ponents, e.g., Web server, LDAP server, J2EE server, and
database. Understanding the request-processing path and
the performance characteristics of each step along the
path has been identified as a crucial problem. Existing
solutions for this problem fall into two broad categories:
intrusive instrumentation [4, 20, 9, 8, 30] and statistical
inference [1, 21, 3, 32, 25].

The instrumentation-based approaches areprecise but
not general. They modify middleware or applications to
record events (e.g., request messages and their end-to-
end identifiers) that can be used to reconstruct request-
processing paths. Their applicability is limited, because
it requires knowledge (and often source code) of the spe-
cific middleware or applications in order to do instru-
mentation. This is especially challenging for complex IT
systems that comprise middleware and applications from
multiple vendors.

Statistical approaches aregeneral but not precise.
They take readily available information (e.g., times-
tamps of network packets) as inputs, and infer request-
processing paths in a “most likely” way. Their accuracy
degrades as the workload increases, because of the diffi-
culty in differentiating activities of concurrent requests.
For example, suppose a small fraction of requests have

strikingly long response time. It would be helpful to
know exactly how a slow request and a normal request
differ in their processing paths—which servers they vis-
ited and where the time was spent. However, the statisti-
cal approaches cannot provideprecise answers for indi-
vidual requests.

The IBM authors on this paper build tools for and di-
rectly participate in consulting services [13] that help
customers (e.g., commercial banks) diagnose problems
with their IT systems. In the past, we have implemented
tools based on both statistical inference [32] and applica-
tion/middleware instrumentation. Motivated by the chal-
lenges we encountered in the field, we set out to explore
whether it is possible to design a request-processing path
discovery method that is bothprecise and general. It
turns out that this is actually doable for most of the com-
monly used middleware and applications.

Our key observation is that most distributed sys-
tems follow two fundamental programming patterns:
(1) communication pattern—synchronous request-reply
communication (i.e., synchronous RPC) over TCP con-
nections, and (2)thread pattern—assigning a thread
to do most of the processing for an incoming request.
These patterns allow us to precisely reason about event
causality and reconstruct request-processing paths with-
out system-dependent instrumentation. Specifically, the
thread pattern allows us to infer causality within a soft-
ware component, i.e., processing an incoming message
X triggers sending an outgoing messageY . The com-
munication pattern allows us to infer causality between
two components, i.e., application-level messageY sent
by one component corresponds to messageY ′ received
by another component. Together, knowledge of these
two types of causality helps us to precisely reconstruct
end-to-end request-processing paths.

Following these observations, our technique recon-
structs request-processing paths from minimal infor-
mation recorded at runtime—which thread performs a
send or recv system call over which TCP connection.
It neither records message contents nor tracks end-to-end
message identifiers. Our method can be implemented
efficiently in either the OS kernel or a virtual machine
monitor (VMM). Finally, it is completely agnostic to
user-space code, thereby enabling accurate discovery of
request-processing paths for most of the commonly used
middleware and applications.

In general, a VMM-based implementation of our
method is more challenging than an OS-based imple-
mentation, because it is more difficult to obtain thread
and TCP information in a VMM. This paper presents
a VMM-based implementation, because we consider it
easier to deploy such a solution in cloud-computing en-
vironments such as Amazon’s EC2 [2]. Our implemen-
tation is based on Xen [5]. In addition to modifying
the VMM code, our current prototype still makes minor

changes to the guest OS. We will convert it to a pure
VMM-based implementation after the ongoing fast pro-
totyping phase.

1.1 Research Contributions
We propose a novel set of techniques calledvPath, for

discovering end-to-end request-processing paths, which
addresses most of the shortcomings of existing ap-
proaches. Specifically, we make the following contribu-
tions:

• New angle for solving a well-known problem: Most
recent work focused on developing better statistical
inference models or different application instrumen-
tation techniques. We instead take a very different
angle—exploiting common programming patterns—
to radically simplify the problem.

• Implementation and generality: We implement vPath
by modifying Xen, without modifying any user-space
code. Although vPath makes certain assumptions
about the application’s programming patterns (syn-
chronous remote invocation and causality of thread ac-
tivities), we argue and corroborate from experiments
and existing literature, that this does not diminish the
general applicability of vPath.

• Completeness and accuracy: We conduct an exten-
sive evaluation of vPath, using a diverse set of appli-
cations (TPC-W, RUBiS, MediaWiki, and the home-
grown vApp) written in different languages (C, Java,
and PHP). Our experiments demonstrate vPath’s com-
pleteness (ability to discover all request paths), accu-
racy (all discovered request paths are correct), and ef-
ficiency (negligible impact on overlying applications).

The rest of this paper is organized as follows. Sec-
tion 2 presents an overview of vPath. Section 3 describes
vPath’s implementation in detail. In Section 4, we empir-
ically evaluate various aspects of vPath. We discuss re-
lated work in Section 5, and present concluding remarks
in Section 6.

2 Overview of vPath
In this section, we present an overview of vPath and

discuss its applicability to existing software architec-
tures.

2.1 Goodness Criteria
Several criteria are meaningful in assessing the desir-

ability and efficacy of any request path discovery tech-
nique. Our design of vPath takes the following five into
consideration. The first three are quantifiable metrics,
while the last two are subjective.

• Completenessis the ratio of correctly discovered re-
quest paths to all paths that actually exist.

• Accuracy is the ratio of correctly discovered request
paths to all paths reported by a technique.

• Efficiency measures the runtime overhead that a dis-
covery technique imposes on the application.

• Generality refers to the hardware/software configura-
tions to which a discovery technique is applicable, in-
cluding factors such as programming language, soft-
ware stack (e.g., one uniform middleware or heteroge-
neous platforms), clock synchronization, presence or
absence of application-level logs, communication pat-
tern, threading model, to name a few.

• Transparency captures the ability to avoid under-
standing or changing user-space code. We opt for
changing OS kernel or VMM, because it only needs
to be done once. By contrast, a user-space solution
needs intrusive modifications to every middleware or
application written in every programming language.

2.2 Assumptions Made by vPath

vPath makes certain assumptions about a distributed
system’s programming pattern. We will show that these
assumptions hold for many commonly used middleware
and applications. vPath assumes that (1) distributed
components communicate through synchronous request-
reply messages (i.e., synchronous RPC), and (2) inside
one component, causality of events is observable through
thread activities.

Communication-pattern assumption. With the syn-
chronous communication pattern, a thread in one compo-
nent sends a request message over a TCP connection to a
remote component, and thenblocks until the correspond-
ing reply message comes back over the same TCP con-
nection. This implies that the second request may only
be sent over the same TCP connection (by any thread)
after receiving the reply message for the first request.

Thread-pattern assumption. Suppose an incoming
requestX (e.g., an HTTP request) to a software compo-
nent triggers one or more subordinate requestsY (e.g.,
LDAP authentication and database queries) being sent
to other components. RequestsX andY belong to the
same request-processing path. vPath assumes that the
thread that sendsX ’s reply message back to the upstream
component is also the thread that sends all the subordi-
nate request messagesY to the downstream components.
Moreover, this thread does not send messages on behalf
of other user requests during that period of time.

Consider the example in Figure 1, whererequest-X
received by component-I triggers request-Y
being sent to component-II. vPath assumes that
send-request-Y and send-reply-X are per-
formed by the same thread. On the other hand, vPath
allows that another thread (e.g., a front-end dispatcher
thread) performs therecv-request-X operation and
then one or more threads perform some pre-processing
on the request before the request is handed to the last
thread in this processing chain for final handling. vPath

recv-request-X

send-reply-X

send-request-Y

recv-reply-Y

recv-request-Y

send-reply-Y
TCP1 TCP2

Component-I Component-II

Figure 1: An example of a request-processing
path. The rectangles (components I and II) repre-
sent distributed software components. The ellipses
represent events observed at individual components,
e.g., recv-request-X is the event that message
X-request is received by a thread incomponent-
I. Messagereply-X is the response to message
request-X. Request-X andreply-X are sent over
TCP1. Request-Y and reply-Y are sent over
TCP2. The arrows show the request-processing path.
The dotted line shows the conceptual linkage between
send-request-Y andsend-reply-X, which is the
assumption of vPath, i.e., the same thread performs the
two send operations.

only requires that this last thread performs both send op-
erations (send-request-Y andsend-reply-X).

Our discussion above focused on only one request.
vPath supports multiple threads in one component con-
currently processing different requests. These threads
can execute in any order dictated by the CPU scheduler
and synchronization libraries, producing interleaved se-
quences of request messages and reply messages.

2.3 Discovering Request-Processing Paths
with vPath

To reconstruct request-processing paths, vPath needs
to infer two types of causality.Intra-node causality cap-
tures the behavior that, within one component, process-
ing an incoming messageX triggers sending an outgo-
ing messageY . Inter-node causality captures the be-
havior that, an application-level messageY sent by one
component corresponds to messageY ′ received by an-
other component. Our thread-pattern assumption en-
ables the inference of intra-node causality, while the
communication-pattern assumption enables the infer-
ence of inter-node causality.

Specifically, vPath reconstructs the request-processing
path in Figure 1 as follows. Insidecomponent-I,
the synchronous-communication assumption allows us
to match the first incoming message overTCP1 with
the first outgoing message overTCP1, match the
second incoming message with the second outgoing
message, and so forth. (Note that one application-
level message may be transmitted as multiple network-
level packets.) Therefore,recv-request-X can
be correctly matched withsend-reply-X. Simi-
larly, we can matchcomponent-I’s send-request-Y

dispatcher thread
Request

worker threads

component

Figure 2: Dispatcher-worker threading model.

with recv-reply-Y, and also matchcomponent-II’s
recv-request-Y with send-reply-Y.

Between two components, we can match
component-I’s first outgoing message overTCP2
with component-II’s first incoming message over
TCP2, and so forth, hence, correctly matching
component-I’s send-request-Ywith component-II’s
recv-request-Y.

The only missing link is that, incomponent-I,
recv-request-X triggers send-request-Y.
From the thread-pattern assumption, we can indirectly
infer this causality with the help of the dotted line
in Figure 1. Recall that we have already matched
recv-request-X with send-reply-X. Be-
tween the time of these two operations, we observe
that the same thread performssend-request-Y
and send-reply-X. It follows from our thread-
pattern assumption thatrecv-request-X triggers
send-request-Y. This completes the construction
of the end-to-end execution path in Figure 1.

As described above, the amount of information needed
by vPath to discover request-processing paths is very
small. vPath only needs to monitor which thread per-
forms a send or receive system call over which TCP con-
nection. This information can be obtained efficiently in
the OS kernel or VMM, without modifying any user-
space code. Unlike existing methods [19, 30, 9], vPath
needs neither message contents nor end-to-end message
identifiers.

2.4 Applicability of vPath to Existing
Threading Models

In this section, we summarize three well-known
threading models, and discuss vPath’s applicability and
limitations with respect to these models. For a more de-
tailed study and comparison of these models, we encour-
age readers to refer to [7, 18, 34].

2.4.1 Dispatcher-worker Threading Model
Figure 2 shows a component of an application built

using the dispatcher-worker model, which is arguably
the most widely used threading model for server appli-
cations. In the front-end, one or more dispatcher threads
use theselect() system call or theaccept() sys-
tem call to detect new incoming TCP connections or new
requests over existing TCP connections. Once a request
is identified, it is handed over to a worker thread for fur-
ther processing. This single worker thread is responsible
for executing all activities triggered by the request (e.g.,

Event queue
I/O events

Finite State Machine
for Request i

Threads
component

Finite State Machine
for Request j

Finite State Machine
for Request k

Fetch

Figure 3: Event-driven model.

Event queue

Stage 1
component

Event queue

Stage n

Figure 4: Staged Event-Driven Architecture.

reading HTML files from a disk or making JDBC calls to
a database), and finally sending a reply message back to
the user. After the worker thread finishes processing the
request, it goes back into the worker thread pool, waiting
to be picked to process another incoming request.

This threading model conforms to vPath’s thread-
pattern assumption described in Section 2.2. Since
a single worker thread executes all activities trig-
gered by a request, the worker thread performs both
send-request-Y andsend-reply-X in Figure 1.

2.4.2 Event-Driven Model

Figure 3 shows the architecture of an application’s
component built using the event-driven programming
model. Compared with other threading models, the
event-driven model uses a relatively small number of
threads, typically equal to or slightly larger than the num-
ber of CPUs. When processing a requestR, a thread
T1 always uses non-blocking system calls. If it cannot
make progress on processing the requestR because a
non-blocking I/O operation on behalf ofR has not yet
completed, the threadT1 records the current status ofR

in a finite state machine maintained forR, and moves
on to process another request. When the I/O operation
on behalf ofR finishes, an event is created in the event
queue, and eventually a threadT2 retrieves the event and
continues to processR. Note thatT1 andT2 may be dif-
ferent threads, both participating in processing the same
request at different times. The event-driven model does
not conform to vPath’s thread-pattern assumption, and
cannot be handled by vPath.

2.4.3 Staged Event-Driven Architecture
(SEDA) Model

Figure 4 shows the architecture of a SEDA-based ap-
plication component [34]. SEDA partitions the request
processing pipeline into stages and each stage has its

own thread pool. Any two neighboring stages are con-
nected by an event queue. SEDA partially conforms to
vPath’s assumptions. If only the last stage sends outgo-
ing messages, and if communication between distributed
components is synchronous (as described in Section 2.2),
then vPath will be able to correctly discover request-
processing paths. Otherwise, vPath would fail.

2.5 Why vPath is Still Useful

Among the three well-known threading models, vPath
can handle the dispatcher-worker thread model, only par-
tially handles the SEDA model, and cannot handle the
event-driven model. However, we still consider vPath
as a widely applicable and general solution, because the
dispatcher-worker thread model is the dominant archi-
tecture among mainstream software. The wide adoption
of the dispatcher-worker thread model is not accidental.
Consider, for example, common middleware platforms
such as J2EE, where threads are managed by the mid-
dleware and used to execute user code written by differ-
ent programmers. Because the middleware cannot make
strong assumptions about the user code’s behavior (e.g.,
blocking or not), it is simplest and safest to adopt the
dispatcher-worker thread model.

The SEDA model has been widely discussed within
the research community, but no consensus about its suit-
ability has been reached (see Welsh’s discussion in [33]).
Moreover, wide adoption of the SEDA model in main-
stream software is yet to be reported.

The pure event-driven model in Figure 3 is rarely used
in real applications. The Flash Web server [18] is often
considered as a notable example that adopts the event-
driven model, but Flash actually uses a hybrid between
event-driven and multi-threaded programming models.
In Flash, a single main thread does all non-blocking net-
work I/O operations and a set of worker threads do block-
ing disk I/O operations. The event-driven model is not
yet popular in real applications and there is consider-
able consensus in the research community that it is diffi-
cult to program and debug applications based on a pure
event-driven model. Similar sentiments were expressed
by Behren et al. [6], who have had extensive experience
programming a variety of applications using the event-
driven approach.

Furthermore, even the frequently-cited performance
advantages of the event-driven model are questionable in
practice, as it is extremely hard to ensure that a thread ac-
tually never blocks. For example, the designers of Flash
themselves observed that the supposedly never-blocking
main thread actually blocks unexpectedly in the “find
file” stage of HTTP request processing, and subsequently
published multiple research papers [22, 23] describing
how they solved the problem by hacking the operating
system. Considering the excellent expertise of the Flash
researchers on this subject and the relatively small code

size of Flash, it is hard to imagine that ordinary program-
mers working on complex commercial software would
have a better chance of getting the implementation right.

Because vPath’s assumptions hold for most of the
existing mainstream software, we consider vPath as a
widely applicable and general solution. In Section 4, we
will validate this using a wide range of applications, writ-
ten in different programming languages, developed by a
variety of communities.

3 Implementation of vPath
The vPath toolset consists of an online monitor and

an offline log analyzer. The online monitor continuously
logs which thread performs asend orrecv system call
over which TCP connection. The offline log analyzer
parses logs generated by the online monitor to discover
request-processing paths and the performance character-
istics at each step along these paths.

The online monitor tracks network-related thread ac-
tivities. This information helps infer the intra-node
causality of the form “processing an incoming message
X triggers sending an outgoing messageY .” It also
tracks the identity of each TCP connection, i.e., the four-
element tuple(source IP, source port, dest IP, dest port)
that uniquely identifies a live TCP connection at any mo-
ment in time. This information helps infer inter-node
causality, i.e., messageY sent by a component corre-
sponds to messageY ′ received by another component.

The online monitor is implemented in Xen 3.1.0 [5]
running on x86 32-bit architecture. The guest OS is
Linux 2.6.18. Xen’s para-virtualization technique modi-
fies the guest OS so that privileged instructions are han-
dled properly by the VMM. Xen uses hypercalls to hand
control from guest OS to the VMM when needed. Hy-
percalls are inserted at various places within the modified
guest OS. In Xen’s terminology, a VM is called ado-
main. Xen runs a special domain calledDomain0, which
executes management tasks and performs I/O operations
on behalf of other domains.

Below we first describe how vPath’s online monitor
tracks thread activities and TCP connections, and then
describe the offline log analyzer.

3.1 Monitoring Thread Activities

vPath needs to track which thread performs asend or
recv system call over which TCP connection. If thread
scheduling activities are visible to the VMM, it would
be easy to identify the running threads. However, unlike
process switching, thread context switching is transpar-
ent to the VMM. For a process switch, the guest OS has
to update the CR3 register to reload the page table base
address. This is a privileged operation and generates a
trap that is captured by the VMM. By contrast, a thread
context switch is not a privileged operation and does not
result in a trap. As a result, it is invisible to the VMM.

Luckily, this is not a problem for vPath, because
vPath’s task is actually simpler. We only need informa-
tion about currently active thread when a network send
or receive operation occurs (as opposed to fully discover-
ing thread-schedule orders). Each thread has a dedicated
stack within its process’s address space. It is unique to
the thread throughout its lifetime. This suggests that the
VMM could use the stack address in a system call to
identify the calling thread. The x86 architecture uses the
EBP register for the stack frame base address. Depend-
ing on the function call depth, the content of the EBP
may vary on each system call, pointing to an address in
the thread’s stack. Because the stack has a limited size,
only the lower bits of the EBP register vary. Therefore,
we can get a stable thread identifier by masking out the
lower bits of the EBP register.

Specifically, vPath tracks network-related thread ac-
tivities as follows:

• The VMM intercepts all system calls that send or re-
ceive TCP messages. Relevant system calls in Linux
are read(), write(), readv(), writev(),
recv(), send(), recvfrom(), sendto(),
recvmsg(), sendmsg(), andsendfile(). In-
tercepting system calls of apara-virtualized Xen VM
is possible because they use “int 80h” and this soft-
ware trap can be intercepted by VMM.

• On system call interception, vPath records the cur-
rent DomainID, the content of the CR3 register, and
the content of the EBP register. DomainID identi-
fies a VM. The content of CR3 identifies a process in
the given VM. The content of EBP identifies a thread
within the given process. vPath uses a combination of
DomainID/CR3/EBP to uniquely identify a thread.

By default, system calls in Xen 3.1.0 are not inter-
cepted by the VMM. Xen maintains an IDT (Interrupt
Descriptor Table) for each guest OS and the 0x80th en-
try corresponds to the system call handler. When a
guest OS boots, the 0x80th entry is filled with the ad-
dress of the guest OS’s system call handler through the
set trap table hypercall. In order to intercept sys-
tem calls, we prepare our custom system call handler,
register it into IDT, and disable direct registration of the
guest OS system call handler. On a system call, vPath
checks the type of the system call, and logs the event
only if it is a network send or receive operation.

Contrary to the common perception that system call
interception is expensive, it actually has negligible im-
pact on performance. This is because system calls al-
ready cause a user-to-kernel mode switch. vPath code is
only executed after this mode switch and does not incur
this cost.

3.2 Monitoring TCP Connections

On a TCP send or receive system call, in addition
to identifying the thread that performs the operation,
vPath also needs to log the four-element tuple(source IP,
source port, dest IP, dest port) that uniquely identifies
the TCP connection. This information helps match a
send operation in the message source component with
the corresponding receive operation in the message des-
tination component. The current vPath prototype adds
a hypercall in the guest OS to deliver this information
down to the VMM. Upon entering a system call of in-
terest, the modified guest OS maps the socket descriptor
number into(source IP, source port, dest IP, dest port),
and then invokes the hypercall to inform the VMM.

This approach works well in the current prototype, and
it modifies fewer than 100 lines of source code in the
guest OS (Linux). However, our end goal is to imple-
ment a pure VMM-based solution that does not mod-
ify the guest OS at all. Such a pure solution would be
easier to deploy in a Cloud Computing platform such as
EC2 [2], because it only modifies the VMM, over which
the platform service provider has full control.

As part of our future work, we are exploring several
techniques to avoid modifying the guest OS. Our early
results show that, by observing TCP/IP packet head-
ers in Domain0, four-element TCP identifiers can be
mapped to socket descriptor numbers observed in sys-
tem calls with high accuracy. Another alternative tech-
nique we are exploring is to have the VMM keep track
of the mapping from socket descriptor numbers to four-
element TCP identifiers, by monitoring system calls that
affect this mapping, includingbind(), accept(),
connect(), andclose().

3.3 Offline Log Analyzer

The offline log analyzer parses logs generated by the
online monitor to extract request-processing paths and
their performance characteristics. The analyzer’s algo-
rithm is shown in Algorithm 1. The format of input data
is shown in Figure 5.

On Line 2 of Algorithm 1, it verifies whether the trace
file is in a correct format. On Line 3, it merges the system
call log and the hypercall log into a single one for ease
of processing. All events are then read into linked listsL
on Line 4.

Events are normalized prior to actual processing. If an
application-level message is large, it may take multiple
system calls to send the message. Similarly, on the des-
tination, it may take multiple system calls to read in the
entire message. These consecutivesend orrecv events
logically belong to a single operation. On Line 5, mul-
tiple consecutivesend events are merged into a single
one. Consecutiverecv events are merged similarly.

On Line 6, UPDATERECVTIME performs another type
of event normalization. It updates the timestamp of a

Event # Domain # CR3 EBP EAX EBX

OP Type
(R/S)Event # Domain # Socket

Descriptor #
Local

IP Addr & Port
Remote

IP Addr & Port
OP Type
(R/S)Event # Domain # Socket

Descriptor #
Local

IP Addr & Port
Remote

IP Addr & Port

Format of Data Obtained Through System Call Interception

Format of Data Obtained Through Hypercall in Syscall Handler

0733 Dom1 002780 cr3:04254000 ebp:bfe37034 eax:3 ebx:12
0734 R Dom1 sd:12 L:130.203.8.24:41845 R:130.203.8.25:8009
0735 Dom1 002781 cr3:04254000 ebp:bfe34b34 eax:146 ebx:11
0736 S Dom1 sd:11 L:130.203.8.24:80 R:130.203.65.112:2395

Example

Time
Stamp

Figure 5: Format of vPath log data. The example shows
two system calls (events 0733 and 0735). For each sys-
tem call, a hypercall immediately follows (events 0734
and 0736). The IP and port information provided by the
hypercall helps identify TCP connections. In the sys-
tem call log, EAX holds system call number. EBX holds
socket descriptor number forread, andwrite. If EAX
is 102 (i.e.,socketcall), then EBX is the subclass of
the system call (e.g.send or recv).

recv event to reflect the end of the receive operation
rather than the beginning of the operation. The vPath
online monitor records a timestamp for each system call
of interest when it is invoked. When a thread sends out
a request message and waits for the reply, this event is
recorded by vPath and the thread may wait in the blocked
state for a long time. To accurately calculate the response
time of this remote invocation from the caller side, we
need to know when therecv operation returns rather
than when it starts. For arecv system callr performed
by a threadT , we simply use the timestamp of the next
system call invoked by threadT as the return time ofr.

The operation from Line 10 to 17 pairs up asend
event at the message source with the corresponding
recv event at the message destination. Once a pair of
matching eventsec anded are identified, the same TCP
connection’s events afterec anded are paired up sequen-
tially by PAIRUPFOLLOWINGS.

Inside FINDREMOTEMATCHINGEVENT on Line 13,
it uses a four-element tuple(source IP, source port,
dest IP, dest port) to match a TCP connectiontcp1 ob-
served on a componentc1 with a TCP connectiontcp2

observed on another componentc2. Supposec1 is the
client side of the TCP connection. The firstsend op-
eration overtcp1 observed onc1 matches with the first
recv operation overtcp2 observed onc2, and so forth.
There is one caveat though. Because port numbers are
reused across TCP connections, it is possible that two
TCP connections that exist at different times have iden-
tical (source IP, source port, dest IP, dest port). For ex-
ample, two TCP connectionstcp2 andtcp′2 that exist on
c2 at different times both can potentially match withtcp1

on c1. We use timestamps to solve this problem. Note
that the lifetimes oftcp2 and tcp′2 do not overlap and
must be far apart, because in modern OS implementa-

Algorithm 1 THE OFFLINE LOG ANALYZER :
Input: Log fileFi for application processPi, 1 ≤ i ≤ n.
Output: Linked listsLi of events, where every event is
tagged with the identifier of the user request that triggers
the event.

1: for each processi do
2: CHECKDATA INTEGRITY(Fi)
3: PREPROCESSDATA(Fi)
4: Li ←BUILD EVENTL IST(Fi)
5: MERGECONSECUTIVEEVENTS(Li)
6: UPDATERECVTIME(Li)
7: Q←Q ∪ FINDFRONTENDPROCESS(Li)
8: end for
9: /* Pair up everysend andrecv events. */

10: for each processc do
11: for each eventec with ec.peer = NULL do
12: d←FINDPROCESS(ec.remote IP)
13: ed ←FINDREMOTEMATCHINGEVENT(d,

14: ec.local IP&port, ec.remote IP&port)
15: PAIRUPFOLLOWINGS(ec, ed)
16: end for
17: end for
18: /* Assign a unique ID to each user request. */
19: R←IDENTIFYREQUESTS(Q)
20: for each request idr ∈ R do
21: while (any event is newly assignedr) do
22: /* Intra-node discovery. */
23: for each processc do
24: (ei, ej)←FINDREQUESTBOUNDARY(c, r)
25: for all eventsek within (ei, ej) do
26: if ek.thread id = ej .thread id then
27: ek.request id← r

28: end if
29: end for
30: end for
31: /* Inter-node discovery. */
32: for each processc do
33: (ei, ej)←FINDREQUESTBOUNDARY(c, r)
34: for all eventsek within (ei, ej) do
35: if ek.request id = r then
36: el ←GETREMOTEMATCHINGEVENT(ek)
37: el.request id← r

38: end if
39: end for
40: end for
41: end while
42: end for

tions, the ephemeral port used by the client side of a
TCP connection is reused only after the entire pool of
ephemeral ports have been used, which takes hours or
days even for a busy server. This allows a simple solu-
tion in vPath. Betweentcp2 and tcp′2, we matchtcp1

with the one whose lifetime is closest totcp1. This solu-

VMMVMMVMMVMM

Apache
JBoss2

MySQL

VM1

JBoss1
Client

Linux Do
m
-0 VM2Do

m
-0 VM3Do

m
-0 VM4Do

m
-0

Figure 6: The topology of TPC-W.

tion does not require very accurate clock synchronization
between hosts, because the lifetimes oftcp2 andtcp′2 are
far apart.

On Line 19, all user requests are identified and as-
signed unique IDs. It goes through events and looks for
foreign IP addresses that do not belong to VMs moni-
tored by vPath. Events with foreign IP addresses are gen-
erated at front-end components and represent entry/exit
points of user requests.

Starting from Line 20, paths are constructed by pro-
cessing user requests one by one. The algorithm consists
of two for loops, which implements intra-node discov-
ery and inter-node discovery, respectively. In the first
loop, the starting event and ending event of a given re-
quest are identified through FINDREQUESTBOUNDARY.
All events between them and with the same thread ID
are assigned the same user request ID. In the second
loop (for inter-node discovery), FINDREQUESTBOUND-
ARY is called again to find the starting event and the
ending event of every user request. For each event
ek that belongs to the user request, GETREMOTEM-
ATCHINGEVENT uses information computed on Line 13
to find the matching eventel at the other end of the TCP
connection. Eventel is assigned eventek ’s user request
ID. This process repeats until every event is assigned a
user request ID.

4 Experimental Evaluation
Our experimental testbed consists of Xen VMMs

(v3.1.0) hosted on Dell servers connected via Gigabit
Ethernet. Each server has dual Xeon 3.4 GHz CPUs with
2 MB of L1 cache and 3 GB RAM. Each of our servers
hosts several virtual machines (VMs) with each VM as-
signed 300 MB of RAM. We use thexentop utility in
Domain0 to obtain the CPU utilization of all the VMs
running on that server.

4.1 Applications

To demonstrate the generality of vPath, we evaluate
vPath using a diverse set of applications written in differ-
ent programming languages (C, Java, and PHP), devel-
oped by communities with very different backgrounds.

TPC-W: To evaluate the applicability of vPath for re-
alistic workloads, we use a three-tier implementation of

VM1

VM3

VM2 VM4

VM5

Tier 1 Tier 2 Tier 3

vApp
Client

Figure 7: The topology of vApp used in evaluation.

the TPC-W benchmark [27], which represents an online
bookstore developed at New York University [31]. Our
chosen implementation of TPC-W is a fully J2EE com-
pliant application, following the “Session Facade” design
pattern. The front-end is a tier of Apache HTTP servers
configured to load balance the client requests among
JBoss servers in the middle tier. JBoss 3.2.8SP1 [14]
is used in the middle tier. MySQL 4.1 [17] is used for
the back-end database tier. The topology of our TPC-W
setup is shown in Figure 6. We use the workload gener-
ator provided with TPC-W to simulate multiple concur-
rent clients accessing the application.

This setup is a heterogeneous test environment for
vPath. The Apache HTTP server is written in C and is
configured to use a multi-process architecture. JBoss is
written in Java and MySQL is written in C.

RUBiS: RUBiS [24] is an e-Commerce benchmark de-
veloped for academic research. It implements an online
auction site loosely modeled after eBay, and adopts a
two-tier architecture. A user can register, browse items,
sell items, or make a bid. It is available in three different
versions: Java Servlets, EJB, and PHP. We use the PHP
version of RUBiS in order to differentiate from TPC-W,
which is written in Java and also does e-Commerce. Our
setup uses one VM to run a PHP-enabled Apache HTTP
server and another VM to run MySQL.

MediaWiki: MediaWiki [16] is a mainstream open
source application. It is the software behind the pop-
ular Wikipedia site (wikipedia.org), which ranks in the
top 10 among all Web sites in terms of traffic. As ma-
ture software, it has a large set of features, e.g., support
for rich media and a flexible namespace. Because it is
used to run Wikipedia, one of the highest traffic sites on
the Internet, its performance and scalability have been
highly optimized. It is interesting to see whether the op-
timizations violate the assumptions of vPath (i.e., syn-
chronous remote invocation and event causality observ-
able through thread activities) and hence would fail our
technique. MediaWiki adopts a two-tier architecture and
is written in PHP. Our setup uses one VM to run PHP-
enabled Apache and another VM to run MySQL.

vApp: vApp is our own prototype application. It is an
extreme test case we designed for vPath. It can exercise
vPath with arbitrarily complex request-processing paths.
It is a custom multi-tier multi-threaded application writ-
ten in C. Figure 7 shows an example of a three-tier vApp

0.00

0.20

0.40

0.60

0.80

1.00

5 10 15 20 25 50 65

C
D

F

Response Time (sec)

Vanilla Xen
vPath

App Logging

Figure 8: CDF (cumulative distribution function) com-
parison of TPC-W response time.

Response time in seconds Throughput(req/sec)
Configuration (Degradation in %) (Degradation in %)

Average 90th percentile Average

Vanilla Xen 4.45 11.58 4.88

vPath 4.72 (6%) 12.28 (6%) 4.59 (6%)

App Logging 10.31 (132%) 23.95 (107%) 4.10 (16%)

Table 1: Response time and throughput of TPC-W. “App
Logging” represents a log-based tracking technique that
turns on logging on all tiers of TPC-W.

topology. vApp can form various topologies, with the de-
sired number of tiers and the specified number of servers
at each tier. When a server in one tier receives a request,
it either returns a reply, or sends another request to one
of the servers in the downstream tier. When a server re-
ceives a reply from a server in the downstream tier, it ei-
ther sends another request to a server in the downstream
tier, or returns a reply to the upstream tier. All deci-
sions are made based on specified stochastic processes
so that it can generate complex request-processing paths
with different structures and path lengths.

We also developed a vApp client to send requests to
the front tier of the vApp servers. The client can be
configured to emulate multiple concurrent sessions. As
request messages travel through the components of the
vApp server, the identifiers of visited components are ap-
pended to the message. When a reply is finally returned
to the client, it reads those identifiers to precisely recon-
struct the request-processing path, which serves as the
ground truth to evaluate vPath. The client also tracks the
response time of each request, which is compared with
the response time estimated by vPath.

4.2 Overhead of vPath

We first quantify the overhead of vPath, compared
with both vanilla (unmodified) Xen and log-based track-
ing techniques [32, 25]. For the log-based techniques,
we turn on logging on all tiers of TPC-W. The experi-
ment below uses the TPC-W topology in Figure 6.

0.00

0.20

0.40

0.60

0.80

1.00

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

CPU Utilization (%)

Vanilla Xen
vPath

App Logging

Figure 9: CDF Comparison of TPC-W JBoss tier’s CPU
utilization.

Overhead of vPath on TPC-W. Table 1 presents the
average and90th percentile response time of TPC-W
benchmark as seen by the client, catering to100 con-
current user sessions. For all configurations,100 con-
current sessions cause near100% CPU utilization at the
database tier. Table 1 shows that vPath has low over-
head. It affects throughput and average response time by
only 6%. By contrast, “App Logging” decreases through-
put by 16% and increases the average response time by
as high as 132%. The difference in response time is
more clearly shown in Figure 8, where vPath closely
follows “vanilla Xen”, whereas “App Logging” signifi-
cantly trails behind.

Figure 9 shows the CPU utilization of the JBoss tier
when the database tier is saturated. vPath has negligi-
ble CPU overhead whereas “App Logging” has signif-
icant CPU overhead. For instance, vPath and “vanilla
Xen” have almost identical90th percentile CPU uti-
lization (13.6% vs. 14.4%), whereas the90th percentile
CPU utilization of “App Logging” is 29.2%, more than
twice that of vPath. Thus, our technique, by eliminating
the need for using application logging to trace request-
processing paths, improves application performance and
reduces CPU utilization (and hence power consumption)
for data centers. Moreover, vPath eliminates the need to
repeatedly write custom log parsers for new applications.
Finally, vPath can even work with applications that can-
not be handled by log-based discovery methods because
those applications were not developed with this require-
ment in mind and do not generate sufficient logs.

Overhead of vPath on RUBiS. Due to space limita-
tion, we report only summary results on RUBiS. Table 2
shows the performance impact of vPath on RUBiS. We
use the client emulator of RUBiS to generate workload.
We set the number of concurrent user sessions to 900 and
set user think time to 20% of the original value in order
to drive the CPU of the Apache tier (which runs PHP) to
100% utilization. vPath imposes low overhead on RU-
BiS, decreasing throughput by only 5.6%.

Response Time in millisec Throughput in req/sec
(Degradation in %) (Degradation in %)

Vanilla Xen 597.2 628.6

vPath 681.8 (14.13%) 593.4 (5.60%)

Table 2: Performance impact of vPath on RUBiS.

Response time (in sec) Throughput (req/sec)

Configuration Avg(Std.) Overhead Avg(Std.) Overhead

Vanilla Xen 1.69(.053) 2915.1(88.9)

(1) Intercept Syscall1.70(.063) .7% 2866.6(116.5) 1.7%

(2) Hypercall 1.75(.050) 3.3% 2785.2(104.6) 4.5%

(3) Transfer Log 2.02(.056) 19.3% 2432.0(58.9) 16.6%

(4) Disk Write 2.10(.060) 23.9% 2345.4(62.3) 19.1%

Table 3: Worst-case overhead of vPath and breakdown
of the overhead. Each row represents the overhead of the
previous row plus the overhead of the additional opera-
tion on that row.

Worst-case Overhead of vPath. The relative over-
head of vPath depends on the application. We are in-
terested in knowing theworst-case overhead (even if the
worst case is unrealistic for practical systems).

The relative overhead of vPath can be calculated as
v

v+p
, wherev is vPath’s processing time for monitoring

a network send or receive operation, andp is the appli-
cation’s processing time related to this network opera-
tion, e.g., converting data retrieved from the database
into HTML and passing the data down the OS kernel’s
network stack. vPath’s relative overhead is highest for an
application that has the lowest processing timep. We use
a tiny echo program to represent such a worst-case appli-
cation, in which the client sends a one-byte message to
the server and the server echoes the message back with-
out any processing. In our experiment, the client creates
50 threads to repeatedly send and receive one-byte mes-
sages in a busy loop, which fully saturates the server’s
CPU.

When the application invokes a network send or re-
ceive system call, vPath performs a series of operations,
each of which introduces some overhead:(1) intercept-
ing system call in VMM,(2) using hypercall to deliver
TCP information (src IP, src port, dest IP, dest port)
from guest OS to VMM,(3) transferring log data from
VMM to Domain0, and(4) Domain0 writing log data to
disk. These operations correspond to different rows in
Table 3, where each row represents the overhead of the
previous row plus the overhead of the additional opera-
tion on that row.

Table 3 shows that intercepting system calls actually
has negligible overhead (1.7% for throughput). The
biggest overhead is due to transferring log data from
VMM to Domain0. This step alone degrades through-
put by 12.1%. Our current implementation uses VMM’s
printk() to transfer log data toDomain0, and we are
exploring a more efficient implementation. Combined

1

3

5

3

5

3

1

3

1

3

1

2

1

2

11

2

4

2

1

(a) Simple path (b) Complex path
Figure 10: Examples of vApp’s request-processing paths
discovered by vPath. The circled numbers correspond to
VM IDs in Figure 7.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10 20 30 40 50 60 70 80 90 100
C

D
F

Response Time (ms)

Estimated by vPath
Measured by vApp Client

Figure 11: CDF of vApp’s response time, as estimated
by vPath and actually measured by the vApp client.

together, the operations of vPath degrade throughput by
19.1%. This is the worst-case for a contrived tiny “appli-
cation.” For real applications, throughput degradation is
much lower, only 6% for TPC-W and 5.6% for RUBiS.

4.3 Request-Processing Paths of vApp

Our custom application vApp is a test case designed
to exercise vPath with arbitrarily complex request-
processing paths. We configure vApp to use the topol-
ogy in Figure 7. The client emulates 10-30 concurrent
user sessions. In our implementation, as a request mes-
sage travels through the vApp servers, it records the ac-
tual request-processing path, which serves as the ground
truth to evaluate vPath.

The request-processing path of vApp, as described
in 4.1, is designed to be random. To illustrate the abil-
ity of our technique to discover sophisticated request-
processing paths, we present two discovered paths in Fig-
ure 10. The simple path consists of 2 remote invocations
in a linear structure, while the complex path consists of 7
invocations and visits some components more than once.

In addition to discovering request-processing paths,
vPath can also accurately calculate the end-to-end re-
sponse times as well as the time spent on each tier along
a path. This information is helpful in debugging dis-
tributed systems, e.g., identifying performance bottle-
necks and abnormal requests. Figure 11 compares the

Apache
JBoss2

MySQL
JBoss1

Client

Client Request

Large Number
of Requests and

Replies
between

JBoss & MySQLPartial Reply Partial Reply

Partial ReplyPartial Reply

Figure 12: Typical request-processing paths of TPC-W.

end-to-end response time estimated by vPath with that
actually measured by the vApp client. The response time
estimated by vPath is almost identical to that observed by
the client, but slightly lower. This small difference is due
to message delay between the client and the first tier of
vApp, which is not tracked by vPath because the client
runs on a server that is not monitored by vPath.

We executed a large number of requests at different
session concurrency levels. We also experimented with
topologies much larger than that in Figure 7, with more
tiers and more servers in each tier. All the results show
that vPath precisely discovers the path of each and every
executed request.

4.4 Request-Processing Paths of TPC-W

The three-tier topology (see the top of Figure 12) of
the TPC-W testbed is static, but its request-processing
paths are dynamic and can vary, depending on which
JBoss server is accessed and how many queries are ex-
changed between JBoss and MySQL. The TPC-W client
generates logs that include the total number of requests,
current session counts, and individual response time of
each request, which serve as the ground truth for evaluat-
ing vPath. In addition to automated tests, for the purpose
of careful validation, we also conduct eye-examination
on some samples of complex request-processing paths
discovered by vPath and compare them with information
in the application logs.

vPath is able to correctly discover all request-
processing paths with 100% completeness and 100% ac-
curacy (see Section 2.1 for the definition). We started out
without knowing how the paths of TPC-W would look.
From the results, we were able to quickly learn the path
structure without any knowledge of the internals of TPC-
W. Typical request-processing paths of TPC-W have the
structure in Figure 12.

We observe two interesting things that we did not
anticipate. First, when processing one request, JBoss
makes a large number of invocations to MySQL. Most
requests fall into one of two types. One type makes about
20 invocations to MySQL, while the other type makes

RUBiS(PHP) MySQL
Client Request

Reply

Client

Exactly 3
Round Trips

About 50
Consecutive

recv()

Possibly
Sending Large
Data Here

Figure 13: Typical request-processing paths of RUBiS.

about 200 invocations. These two types represent radi-
cally different TPC-W requests.

The second interesting observation with TPC-W is
that, both JBoss and Apache send out replies in a pipeline
fashion (see Figure 12). For example, after making the
last invocation to MySQL, JBoss reads in partial reply
from MySQL and immediately sends it to Apache. JBoss
then reads and sends the next batch of replies, and so
forth. This pipeline model is an effort to reduce memory
buffer, avoid memory copy, and reduce user-perceived
response time. In this experiment, once JBoss sends the
first partial reply to Apache, it no longer makes invoca-
tions to MySQL (it only reads more partial replies from
MySQL for the previous invocation). vPath is general
enough to handle an even more complicated case, where
JBoss sends the first partial reply to Apache, and then
makes more invocations to MySQL in order to retrieve
data for constructing more replies. Even for this com-
plicated, hypothetical case, all the activities will stillbe
correctly assigned to a single request-processing path.

4.5 Request-Processing Paths of RUBiS and
MediaWiki

Unlike TPC-W, which is a benchmark intentionally
designed to exercise a breadth of system components
associated with e-Commerce environments, RUBiS and
MediaWiki are designed with practicality in mind, and
their request-processing paths are actually shorter and
simpler than those of TPC-W.

Figure 13 shows the typical path structure of RUBiS.
With vPath, we are able to make some interesting ob-
servations without knowing the implementation details
of RUBiS. We observe that a client request first triggers
three rounds of messages exchanged between Apache
and MySQL, followed by the fourth round in which
Apache retrieves a large amount of data from MySQL.
The path ends with a final round of messages exchanged
between Apache and MySQL. The pipeline-style par-
tial message delivery in TPC-W is not observed in RU-
BiS. RUBiS and TPC-W also differ significantly in their
database access patterns. In TPC-W, JBoss makes many

small database queries, whereas in RUBiS, Apache re-
trieves a large amount of data from MySQL in a single
step (the fourth round). Another important difference is
that, in RUBiS, many client requests finish at Apache
without triggering database accesses. These short re-
quests are about eight times more frequent than the long
ones. Finally, in RUBiS, Apache and MySQL make
many DNS queries, which are not observed in TPC-W.

For MediaWiki, the results of vPath show that very
few requests actually reach all the way to MySQL, while
most requests are directly returned by Apache. This is
because there are many static contents, and even for dy-
namic contents, MediaWiki is heavily optimized for ef-
fective caching. For a typical request that changes a wiki
page, the PHP module in Apache makes eight accesses
to MySQL before replying to the client.

4.6 Discussion on Benchmark Applications

We started the experiments with little knowledge of
the internals of TPC-W, RUBiS and MediaWiki. Dur-
ing the experimentation, we did not read their manuals
or source code. We did not modify their source code,
bytecode, or executable binary. We did not try to un-
derstand their application logs or write parsers for them.
We did not install any additional application monitoring
tools such as IBM Tivoli or HP OpenView. In short, we
did not change anything in the user space.

Yet, with vPath, we were able to make many inter-
esting observations about the applications. Especially,
different behaviors of the applications made us wonder,
in general how to select “representative” applications to
evaluate systems performance research. TPC-W is a
widely recognizedde facto e-Commerce benchmark, but
its behavior differs radically from the more practical RU-
BiS and MediaWiki. This discrepancy could result from
the difference in application domain, but it is not clear
whether the magnitude of the difference is justified. We
leave it as an open question rather than a conclusion.

This question is not specific to TPC-W. For example,
the Trade6 benchmark [35] developed by IBM models
an online stock brokerage Web site. We have intimate
knowledge of this application. As both a benchmark and
a testing tool, it is intentionally developed with certain
complexity in mind in order to fully exercise the rich
functions of WebSphere Application Server. It would be
interesting to know, to what degree the conclusions in
systems performance research are misguided by the in-
tentional complexity in benchmarks such as TPC-W and
Trade6.

5 Related Work
There is a large body of work related to request-

processing path discovery. They can be broadly classi-
fied into two categories: statistical inference and system-
dependent instrumentation. The statistical approach

takes readily available information (e.g., the arrival
time of network packets) as inputs, and infers request-
processing paths in a “most likely” way. Its accuracy
degrades as the workload increases, because activities of
concurrent requests are mingled together and hard to dif-
ferentiate. The instrumentation approach may accurately
discover request-processing paths, but its applicabilityis
limited due to its intrusive nature. It requires knowledge
(and often source code) of the specific middleware or ap-
plications in order to do instrumentation.

5.1 Statistical Inference

Aguilera et al. [1] proposed two algorithms for debug-
ging distributed systems. The first algorithm finds nested
RPC calls and uses a set of heuristics to infer the causal-
ity between nested RPC calls, e.g., by considering time
difference between RPC calls and the number of poten-
tial parent RPC calls for a given child RPC call. The sec-
ond algorithm only infers the average response time of
components; it does not build request-processing paths.

WAP5 [21] intercepts network related system calls by
dynamically re-linking the application with a customized
system library. It statistically infers the causality be-
tween messages based on their timestamps. By contrast,
our method is intended to be precise. It monitors thread
activities in order to accurately infer event causality.

Anandkumar et al. [3] assumes that a request visits dis-
tributed components according to a known semi-Markov
process model. It infers the execution paths of individ-
ual requests by probabilistically matching them to the
footprints (e.g., timestamped request messages) using the
maximum likelihood criterion. It requires synchronized
clocks across distributed components. Spaghetti is eval-
uated through simulation on simple hypothetical process
models, and its applicability to complex real systems re-
mains an open question.

Sengupta et al. [25] proposed a method that takes ap-
plication logs and a prior model of requests as inputs.
However, manually building a request-processing model
is non-trivial and in some cases prohibitive. In some
sense, the request-processing model is in fact the in-
formation that we want to acquire through monitoring.
Moreover, there are difficulties with using application
logs as such logs may not follow any specific format and,
in many cases, there may not even be any logs available.

Our previous work [32] takes an unsupervised learn-
ing approach to infer attributes (e.g., thread ID, time, and
Web service endpoint) in application logs that can link
activities observed on individual servers into end-to-end
paths. It requires synchronized clocks across distributed
components, and the discovered paths are only statisti-
cally accurate.

5.2 System-dependent Instrumentation

Magpie [4] is a tool-chain that analyzes event logs
to infer a request’s processing path and resource con-
sumption. It can be applied to different applications but
its inputs are application dependent. The user needs to
modify middleware, application, and monitoring tools
in order to generate the needed event logs. Moreover,
the user needs to understand the syntax and semantics
of the event logs in order to manually write an event
schema that guides Magpie to piece together events of
the same request. Magpie does kernel-level monitoring
for measuring resource consumption, but not for discov-
ering request-processing paths.

Pip [20] detects problems in a distributed system by
finding discrepancies between actual behavior and ex-
pected behavior. A user of Pip adds annotations to ap-
plication source code to log messaging events, which are
used to reconstruct request-processing paths. The user
also writes rules to specify the expected behaviors of the
requests. Pip then automatically checks whether the ap-
plication violates the expected behavior.

Pinpoint [9] modifies middleware to inject end-to-end
request IDs to track requests. It uses clustering and sta-
tistical techniques to correlate the failures of requests to
the components that caused the failures.

Chen et al. [8] used request-processing paths as the
key abstraction to detect and diagnose failures, and to
understand the evolution of a large system. They studied
three examples: Pinpoint, ObsLogs, and SuperCall. All
of them do intrusive instrumentation in order to discover
request-processing paths.

Stardust [30] uses source code instrumentation to log
application activities. An end-to-end request ID helps
recover request-processing paths. Stardust stores event
logs into a database, and uses SQL statements to analyze
the behavior of the application.

5.3 Inferring Dependency from System Call

BackTracker [15] is a tool that helps find the source
event of an intrusion, backtracking from the point when
the intrusion is detected. It logs system calls to help in-
fer dependency between system resources, but does not
monitor thread activities and network operations.

Taser [12] is a system that helps recover files damaged
by an intrusion. Like BackTracker, it also uses informa-
tion logged from system calls to infer the dependency
of system resources. It monitors network operations, but
does not monitor thread activities and does not attempt to
precisely infer message causality. Moreover, both Back-
Tracker and Taser are designed for a single server. They
do not track dependency across servers.

Kai et al. [26] proposed a method that uses an optional
field of TCP packets to track inter-node causality, and
assumes that intra-node causality is only introduced by
process/thread forking. As a result, this method cannot

handle the case where intra-node causality is caused by
thread synchronization, e.g., a dispatcher thread wakes
up a worker thread to process an incoming request. This
is a wide used programming pattern in thread pooling.

6 Concluding Remarks
We studied the important problem of finding end-to-

end request-processing paths in distributed systems. We
proposed a method, calledvPath, that can precisely dis-
cover request-processing paths for most of the exist-
ing mainstream software. Our key observation is that
the problem of request-processing path discovery can be
radically simplified by exploiting programming patterns
widely adopted in mainstream software: (1) synchronous
remote invocation, and (2) assigning a thread to do most
of the processing for an incoming request.

Following these observations to infer event causality,
our method can discover request-processing paths from
minimal information recorded at runtime—which thread
performs a send or receive system call over which TCP
connection. This information can be obtained efficiently
in either OS kernel or VMM without modifying any user-
space code.

We demonstrated the generality of vPath by evaluat-
ing with a diverse set of applications (TPC-W, RUBiS,
MediaWiki, and the home-grown vApp) written in differ-
ent programming languages (C, Java, and PHP). vPath’s
online monitor is lightweight. We found that activating
vPath affects the throughput and average response time
of TPC-W by only 6%

Acknowledgments
Part of this work was done during Byung Chul Tak’s

summer internship at IBM. We thank IBM’s Yaoping
Ruan for helpful discussions and Fausto Bernardini for
the management support. We thank the anonymous re-
viewers and our shepherd Landon Cox for their valu-
able feedback. The PSU authors were funded in part
by NSF grants CCF-0811670, CNS-0720456, and a gift
from Cisco, Inc.

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,

and A. Muthitacharoen. Performance debugging for dis-
tributed systems of black boxes. InSOSP’03: Proceed-
ings of the 19th Symposium on Operating Systems Prin-
ciples, pages 74–89, New York, NY, USA, 2003. ACM.

[2] Amazon Elastic Compute Cloud. http://aws.
amazon.com/ec2/.

[3] A. Anandkumar, C. Bisdikian, and D. Agrawal. Tracking
in a spaghetti bowl: monitoring transactions using foot-
prints. In SIGMETRICS ’08: Proceedings of the 2008
ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems, pages 133–
144, New York, NY, USA, 2008. ACM.

[4] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
magpie for request extraction and workload modelling.

In OSDI’04: Proceedings of the 6th conference on Sym-
posium on Opearting Systems Design & Implementation,
Berkeley, CA, USA, 2004. USENIX Association.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebuer, I. Pratt, and A. Warfield. Xen and
the Art of Virtulization. InProceedings of the 19th Sym-
posium on Operating Systems Principles (SOSP), 2003.

[6] R. V. Behren, J. Condit, and E. Brewer. Why Events Are
A Bad Idea (for high-concurrency servers). InProceed-
ings of HotOS IX, 2003.

[7] R. V. Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: scalable threads for internet ser-
vices. InIn Proceedings of the 19th ACM Symposium on
Operating Systems Principles. ACM Press, 2003.

[8] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patter-
son, A. Fox, and E. Brewer. Path-based faliure and evo-
lution management. InNSDI’04: Proceedings of the 1st
conference on Networked Systems Design and Implemen-
tation, Berkeley, CA, USA, 2004. USENIX Association.

[9] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: Problem determination in large, dy-
namic internet services. InDSN ’02: Proceedings of the
2002 International Conference on Dependable Systems
and Networks, pages 595–604, Washington, DC, USA,
2002. IEEE Computer Society.

[10] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration
of Virtual Machines. InNSDI’05: Proceedings of the 2nd
conference on Networked Systems Design & Implementa-
tion, 2005.

[11] T. Erl. Service-oriented architecture. Prentice Hall, 2004.
[12] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara. The

taser intrusion recovery system. InSOSP ’05: Proceed-
ings of the 20th ACM Symposium on Operating Systems
Principles, pages 163–176, New York, NY, USA, 2005.
ACM.

[13] IBM SOA Infrastructure Consulting Services.
http://www-935.ibm.com/services/us/its/pdf/br

infrastructure-architecture-healthcheck-for-soa.

pdf.
[14] The JBoss Application Server.http://www.jboss.

org.
[15] S. T. King and P. M. Chen. Backtracking Intrusions. In

SOSP’03: Proceedings of the 19th ACM Symposium on
Operating Systems Principles, pages 74–89, New York,
NY, USA, 2003. ACM.

[16] MediaWiki. http://www.mediawiki.org.
[17] MySQL. http://www.mysql.com.
[18] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: an effi-

cient and portable web server. InATEC ’99: Proceedings
of USENIX Annual Technical Conference, Berkeley, CA,
USA, 1999. USENIX Association.

[19] W. D. Pauw, R. Hoch, and Y. Huang. Discovering conver-
sations in web services using semantic correlation analy-
sis. volume 0, pages 639–646, Los Alamitos, CA, USA,
2007. IEEE Computer Society.

[20] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat. Pip: detecting the unexpected in

distributed systems. InNSDI’06: Proceedings of the 3rd
conference on Networked Systems Design & Implementa-
tion, Berkeley, CA, USA, 2006. USENIX Association.

[21] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera,
and A. Vahdat. Wap5: black-box performance debugging
for wide-area systems. InWWW ’06: Proceedings of the
15th international conference on World Wide Web, pages
347–356, New York, NY, USA, 2006. ACM.

[22] Y. Ruan and V. Pai. Making the” box” transparent: sys-
tem call performance as a first-class result. InProceed-
ings of the USENIX Annual Technical Conference 2004.
USENIX Association Berkeley, CA, USA, 2004.

[23] Y. Ruan and V. Pai. Understanding and Addressing
Blocking-Induced Network Server Latency. InProceed-
ings of the USENIX Annual Technical Conference 2006.
USENIX Association Berkeley, CA, USA, 2006.

[24] RUBiS. http://rubis.objectweb.org/.
[25] B. Sengupta and N. Banerjee. Tracking transaction foot-

prints for non-intrusive end-to-end monitoring.Auto-
nomic Computing, International Conference on, 0:109–
118, 2008.

[26] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stew-
art, and X. Zhang. Hardware counter driven on-the-
fly request signatures. InASPLOS XIII: Proceedings of
the 13th international conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 189–200, New York, NY, USA, 2008. ACM.

[27] W. Smith. TPC-W: Benchmarking An Ecommerce
Solution. http://www.tpc.org/information/
other/techarticles.asp.

[28] C. Stewart and K. Shen. Performance Modeling and
System Management for Multi-component Online Ser-
vices. InProceedings of the 2nd Symposium on NSDI’05,
Boston MA, May 2005.

[29] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A
Scalable Application Placement Algorithm for Enterprise
Data Centers. InWWW, 2007.

[30] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-
El-Malek, J. Lopez, and G. R. Ganger. Stardust: tracking
activity in a distributed storage system. InSIGMETRICS
’06/Performance ’06: Proceedings of the joint interna-
tional conference on Measurement and modeling of com-
puter systems, New York, NY, USA, 2006. ACM.

[31] NYU TPC-W. http://www.cs.nyu.edu/pdsg/.
[32] T. Wang, C. shing Perng, T. Tao, C. Tang, E. So,

C. Zhang, R. Chang, and L. Liu. A temporal data-mining
approach for discovering end-to-end transaction flows.
In 2008 IEEE International Conference on Web Services
(ICWS08)., Beijing, China, 2008.

[33] M. Welsh. A Note on the status of SEDA.http://
www.eecs.harvard.edu/∼mdw/proj/seda/.

[34] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture
for well-conditioned, scalable internet services.SIGOPS
Oper. Syst. Rev., 35(5):230–243, 2001.

[35] H. Yu, J. Moreira, P. Dube, I. Chung, and L. Zhang. Per-
formance Studies of a WebSphere Application, Trade, in
Scale-out and Scale-up Environments. InThird Inter-
national Workshop on System Management Techniques,
Processes, and Services (SMTPS), IPDPS, 2007.

