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Abstract chines [10], and flexible software composition through
§ervice-0riented Architecture (SOA) [11]. Agility pro-
motes the value of IT, but makes it even harder to know
exactly how a user request travels through distributed IT
components. For instance, was ser¥ein a cluster ac-
tually involved in processing a given request? Was a fail-

Discovering end-to-end request-processing paths i
crucial in many modern IT environments for reasons
varying from debugging and bottleneck analysis to
billing and auditing. Existing solutions for this problem

fall into two broad categories: statistical inference andure caused by componekitor 22 How many database
intrusive instrumentation. The statistical approaches in . y P ) y ;
queries were used to form a response? How much time

fer request-processing paths in a “most likely” way and . -
. ) ? -

their accuracy degrades as the workload increases. Th as spent on each involved components Lack of visibil
Y into the system can be a major obstacle for accurate

instrumentation approaches can be accurate, but they a = oblem determination. capacity planning. billing. and
system dependent as they require knowledge (and oftel Ination, capacity p Ing, billing,

source code) of the application as well as time and efforfaUd'tmg' .
from skilled programmers. We use the ternrequest-processing path, to represent

We have developed a discovery technique calfeadh all activities starting from when a user request is received

that overcomes these shortcomings. Unlike technique'gltstehre Korr;t tfg;”%iigi?]al rzsiﬁorgze Ig’osrﬁmrigzcrﬁbcl)tithlee
using statistical inference, vPath provides precise pattliI ) q P g paih may P P
; o . messages exchanged between distributed software com-
discovery, by monitoring thread and network activities
. . . : . onents, e.g., Web server, LDAP server, J2EE server, and
and reasoning about their causality. Unlike technlquesp . ;
N L2 . - database. Understanding the request-processing path and
using intrusive instrumentation, vPath is |mplementedthe erformance characteristics of each step along the
in a virtual machine monitor, making it agnostic of the P P 9

overlying middleware or application. Our evaluation us- path has been identified as a crucial problem. Existing

ing a diverse set of applications (TPC-W, RUBIS, Me- _solutl(_)ns_for this probl_em fall into two broad categprl_es:
PP . L intrusive instrumentation [4, 20, 9, 8, 30] and statistical
diawiki, and the home-grown vApp) written in differ-

. inference [1, 21, 3, 32, 25].
ent programming languages (C, Java, and PHP) demon The instrumentation-based approachespagei se but

strates the generality and accuracy of vPath as well as itsOt eneral. They modify middleware or applications to
low overhead. For example, turning on vPath affects T ' y : : W pplicali

: R o record events (e.g., request messages and their end-to-
throughput and response time of TPC-W by only 6%. end identifiers) that can be used to reconstruct request-

processing paths. Their applicability is limited, because
it requires knowledge (and often source code) of the spe-
The increasing complexity of IT systems is well docu- cific middleware or applications in order to do instru-
mented [3, 8, 28]. As a legacy system evolves over timementation. This is especially challenging for complex IT
existing software may be upgraded, new applications angystems that comprise middleware and applications from
hardware may be added, and server allocations may bewultiple vendors.
changed. A complex IT system typically includes hard-  Statistical approaches amgeneral but not precise.
ware and software from multiple vendors. Administra- They take readily available information (e.g., times-
tors often struggle with the complexity of and pace of tamps of network packets) as inputs, and infer request-
changes to their systems. processing paths in a “most likely” way. Their accuracy
This problem is further exacerbated by the much-degrades as the workload increases, because of the diffi-
touted IT system *“agility,” including dynamic appli- culty in differentiating activities of concurrent request
cation placement [29], live migration of virtual ma- For example, suppose a small fraction of requests have

1 Introduction



strikingly long response time. It would be helpful to changes to the guest OS. We will convert it to a pure
know exactly how a slow request and a normal requesVMM-based implementation after the ongoing fast pro-
differ in their processing paths—which servers they vis-totyping phase.
ited and where the time was spent. However, the statisti- I
cal approaches cannot provigeecise answers for indi- 1.1 Research Contributions
vidual requests. We propose a novel set of techniques cailBath, for

The IBM authors on this paper build tools for and di- discovering end-to-end request-processing paths, which
rectly participate in consulting services [13] that help @ddresses most of the shortcomings of existing ap-
customers (e.g., commercial banks) diagnose probIerrBroaCheS- Specifically, we make the following contribu-
with their IT systems. In the past, we have implemented!OnS:
tools based on both statistical inference [32] and applicas New angle for solving a well-known problem: Most
tion/middleware instrumentation. Motivated by the chal- recent work focused on developing better statistical
lenges we encountered in the field, we set out to explore inference models or different application instrumen-
whether it is possible to design a request-processing path tation techniques. We instead take a very different
discovery method that is botprecise and general. It angle—exploiting common programming patterns—
turns out that this is actually doable for most of the com-  to radically simplify the problem.

monly used middleware and applications. ¢ Implementation and generality: We implement vPath
Our key observation is that most distributed Sys- by m0d|fy|ng Xen,without mod|fy|ng any user-space
tems follow two fundamental programming patterns: code. Although vPath makes certain assumptions
(1) communication pattern—synchronous request-reply  apout the application’s programming patterns (syn-
communication (i.e., synchronous RPC) over TCP con- chronous remote invocation and causality of thread ac-
nections, and (2thread pattern—assigning a thread tjvities), we argue and corroborate from experiments

to do most of the processing for an incoming request. and existing literature, that this does not diminish the
These patterns allow us to precisely reason about event general applicability of vPath.

causality and reconstruct request-processing paths Wlth.- Completeness and accuracy: We conduct an exten-

out system-dependent instrumentation. Specifically, the sive evaluation of vPath, using a diverse set of appli-

thread pattern alloyvs us to mfe_r causz_illty Wl_thln a soft- cations (TPC-W, RUBIS, MediaWiki, and the home-
ware component, i.e., processing an incoming message : S
grown vApp) written in different languages (C, Java,

fn( utrzli?:g?igi Se;[?el?r? ;?O\?Vztﬂg'?g im‘;fii%i;ﬂe Eg;nw-een and PHP). Our experiments demonstrate vPath’s com-
P y pleteness (ability to discover all request paths), accu-

two components, i.e., application-level messa’ggent racy (all discovered request paths are correct), and ef-
by one component corresponds to messtgeeceived ficiency (negligible impact on overlying applications)
by another component. Together, knowledge of these y (neglig P ying app '

two types of causality helps us to precisely reconstruct The rest of this paper is organized as follows. Sec-

end-to-end request-processing paths. tion 2 presents an overview of vPath. Section 3 describes
Following these observations, our technique recOn_yPath’s implement.ation in detail. In Section 4, we empir-

structs request-processing paths from minimal infor-ically evalu_ate various aspects of vPath. We_ discuss re-

mation recorded at runtime—which thread performs a!ated vv_ork in Section 5, and present concluding remarks

send orr ecv system call over which TCP connection. N Section 6.

It neither records message contents nor tracks end-to-e Overview of vPath

message identifiers. Our method can be implemente ) ) )
efficiently in either the OS kernel or a virtual machine !N this section, we present an overview of vPath and

monitor (VMM). Finally, it is completely agnostic to discuss its applicability to existing software architec-
user-space code, thereby enabling accurate discovery 8{"€S:

request-processing paths for most of the commonly used 1  Goodness Criteria

middleware and applications.

In general, a VMM-based implementation of our
method is more challenging than an OS-based imple
mentat|on,_ becaus_e |t_|s more d'ﬁ'cu_lt to obtain threaOIconsideration. The first three are quantifiable metrics,
and TCP mforr_natmn in a \_/MM. This paper pres_ents_While the last two are subjective.

a VMM-based implementation, because we consider it ] ] .
easier to deploy such a solution in cloud-computing en-® Completenesss the ratio of correctly dl_scovered re-
vironments such as Amazon’s EC2 [2]. Our implemen- duest paths to all paths that actually exist.
tation is based on Xen [5]. In addition to modifying e Accuracy is the ratio of correctly discovered request
the VMM code, our current prototype still makes minor  paths to all paths reported by a technique.

Several criteria are meaningful in assessing the desir-
ability and efficacy of any request path discovery tech-
nigue. Our design of vPath takes the following five into



e Efficiency measures the runtime overhead that a dis- % Component-IT
covery technique imposes on the application. = (recv-request-X—»(send-request-Y

o Generality refers to the hardware/software configura- T¢p1q | _.--- e ‘
tions to which a discovery technique is applicable, in- « send-reply-X J+—(_recv-reply-Y
cluding factors such as programming language, soft-

ware stack (e.g., one uniform middleware or heteroge- _
neous platforms), clock synchronization, presence ofigure 1:  An example of a request-processing

absence of application-level logs, communication patPath. The rectangles (components | and i) repre-
tern, threading model, to name a few. sent distributed software components. The ellipses

represent events observed at individual components,

e Transparency captures the ability to avoid under- 0., Tecv-request - X is the event that message

standing or changing user-space code. We opt fo “request is received by a thread imomponent-

changing OS kernel or VMM, because it only needs .
.|. Messager epl y- X is the response to message
to be done once. By contrast, a user-space solution

needs intrusive modifications to every middleware or- equest - X. Request - Xandr epl y- Xare sent over

o . : . TCP1. Request-Y andreply-Y are sent over
application written in every programming language. TCP2. The arrows show the request-processing path.

2.2 Assumptions Made by vPath The dotted line shows the conceptual linkage between

send- r equest - Yandsend- r epl y- X, whichis the

vPath makes certain assumptions about a distributegssumption of vPath, i.e., the same thread performs the
system’s programming pattern. We will show that thesetWO send operations.

assumptions hold for many commonly used middleware
2gg1pzpnp<all|f;tzt§grimu\$:;?e ?;;tngﬁs‘s;ggéréﬁogfﬁggﬂfs%_nly requires that this last thread performs both send op-
reply messages (i.e., synchronous RPC), and (2) inside' 21ons ¢end- request - Yandsend-repl y- X).

one component, causality of events is observable through Our discussion al?ove focuseq on only one request.
thread activities. vPath supports multiple threads in one component con-

currently processing different requests. These threads
Communication-pattern assumption. With the syn-  can execute in any order dictated by the CPU scheduler
chronous communication pattern, a thread in one compoand synchronization libraries, producing interleaved se-
nent sends a request message over a TCP connection Qd@ences of request messages and reply messages.
remote component, and thblocks until the correspond-
ing reply message comes back over the same TCP con; 4 Discovering Request-Processing Paths
nection. This implies that the second request may only™ with vPath
be sent over the same TCP connection (by any thread)

after receiving the reply message for the firstrequest.  To reconstruct request-processing paths, vPath needs

Thread-pattern assumption. Suppose an incoming to infer two types of causalityntra-node causality cap-
requestX (e.g., an HTTP request) to a software compo-tures the behavior that, within one component, process-
nent triggers one or more subordinate requést®.g., iNg an incoming messag¥ triggers sending an outgo-
LDAP authentication and database queries) being seriflg message’”. Inter-node causality captures the be-
to other components. RequestsandY belong to the havior that, an application-level messagesent by one
same request-processing path. vPath assumes that tB@mponent corresponds to messagereceived by an-
thread that send’s reply message back to the upstreamother component. Our thread-pattern assumption en-
component is also the thread that sends all the subord@bles the inference of intra-node causality, while the
nate request messagggo the downstream Components_ Communication—pattern assumption enables the infer-
Moreover, this thread does not send messages on beh&fce of inter-node causality.
of other user requests during that period of time. Specifically, vPath reconstructs the request-processing
Consider the example in Figure 1, wherquest - X  path in Figure 1 as follows. Insideomponent-I,
received by component-l triggers request-Y  the synchronous-communication assumption allows us
being sent to component-ll. vPath assumes that to match the first incoming message ovie&CP1l with
send-request-Y and send-reply-X are per- the first outgoing message ovéfCP1, match the
formed by the same thread. On the other hand, vPatsecond incoming message with the second outgoing
allows that another thread (e.g., a front-end dispatchemessage, and so forth. (Note that one application-
thread) performs theecv-r equest - X operation and level message may be transmitted as multiple network-
then one or more threads perform some pre-processinigvel packets.) Thereforer ecv-request - X can
on the request before the request is handed to the lasie correctly matched withsend-repl y- X. Simi-
thread in this processing chain for final handling. vPathlarly, we can matcltomponent-I's send- r equest - Y
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with recv-repl y-Y, and also matcltomponent-11's

recv-request - Y with send-repl y- . Figure 3: Event-driven model.
Between two components, we can match

component-I's  first outgoing message ovelCP2

Request > D
dispatcher threa

component

with component-Il's first incoming message over Stage 1 Stage n
TCP2, and so forth, hence, correctly matching 0%%% "%%%
component-1's send- r equest - Y with component-11's AN seees _M,Nw
recv-r equeSt -Y. Event queue | A AN Event queue | A AN

The only missing link is that, incomponent-I,
recv-request-X triggers send-request-Y.
From the thread-pattern assumption, we can indirectly
infer this causality with the help of the dotted line

in Figure 1. Recall that we have already matcheda database), and finally sending a reply message back to

recv-request-X with send-reply-X Be- - .
tween the time of these two operations, we observé[he user. After the worker thread finishes processing the

that the same thread performsend-r equest - Y reques_t, it goes back into the worker th_read pool, waiting
and send-repl y-X. It follows from our thread- to be_plcked tq process another incoming reqL,Jest.

pattern assumption thatecv-request - X triggers This threadmg_ model cpnforms to yPaths thre‘f"d'
send-request - Y. This completes the construction pattc_arn assumption described in Section 22 Sl_nce
of the end-to-end execution path in Figure 1. a single worker thread executes all activities trig-

As described above, the amount of information needeéJered by a request, the worker thread' pe'rforms both
by vPath to discover request-processing paths is ver?end' request - Yandsend-repl y- Xin Figure 1.
small. vPath only n_eeds to monitor Which_ thread per-5 4 o Event-Driven Model
forms a send or receive system call over which TCP con- . o
nection. This information can be obtained efficiently in ~ Figure 3 shows the architecture of an application’s
the OS kernel or VMM, without modifying any user- component built using the event-drlvgn programming
space code. Unlike existing methods [19, 30, 9], vPatinodel. Compared with other threading models, the
needs neither message contents nor end-to-end messa@ent-driven model uses a relatively small number of

Figure 4: Staged Event-Driven Architecture.

reading HTML files from a disk or making JDBC calls to

identifiers. threads, typically equal to or slightly larger than the num-
ber of CPUs. When processing a requéista thread

2.4 Applicability of vPath to Existing T, always uses non-blocking system calls. If it cannot
Threading Models make progress on processing the requedtecause a

In this section, we summarize three well-known non-blocking I/O operation on behalf @t has not yet
threading models, and discuss vPath's applicability andompleted, the threafl; records the current status &f
limitations with respect to these models. For a more dein a finite state machine maintained fér and moves
tailed study and comparison of these models, we encouf@n to process another request. When the 1/O operation

age readers to refer to [7, 18, 34]. on behalf ofR finishes, an event is created in the event
) ] queue, and eventually a thre@gi retrieves the event and
2.4.1 Dispatcher-worker Threading Model continues to proces&. Note thatT; and7, may be dif-

Figure 2 shows a component of an application builtferent threads, both participating in processing the same
using the dispatcher-worker model, which is arguablyrequest at different times. The event-driven model does
the most widely used threading model for server appli-not conform to vPath’s thread-pattern assumption, and
cations. In the front-end, one or more dispatcher threadsannot be handled by vPath.
use thesel ect () system call or the@ccept () sys- . .
tem call to detect new incoming TCP connections or nevv2'4'3 Staged Event-Driven Architecture
requests over existing TCP connections. Once a request (SEDA) Model
is identified, it is handed over to a worker thread for fur-  Figure 4 shows the architecture of a SEDA-based ap-
ther processing. This single worker thread is responsiblg@lication component [34]. SEDA patrtitions the request
for executing all activities triggered by the request (e.g. processing pipeline into stages and each stage has its



own thread pool. Any two neighboring stages are con=size of Flash, it is hard to imagine that ordinary program-
nected by an event queue. SEDA partially conforms tomers working on complex commercial software would
vPath’s assumptions. If only the last stage sends outgdiave a better chance of getting the implementation right.
ing messages, and if communication between distributed Because vPath’s assumptions hold for most of the
components is synchronous (as described in Section 2.2¢xisting mainstream software, we consider vPath as a
then vPath will be able to correctly discover request-widely applicable and general solution. In Section 4, we

processing paths. Otherwise, vPath would fail. will validate this using a wide range of applications, writ-
) ) ten in different programming languages, developed by a
2.5 Why vPath is Still Useful variety of communities.

Among the three well-known threading models, vPath .
can handle the dispatcher-worker thread model, only par3 Implementation of vPath
tially handles the SEDA model, and cannot handle the The vPath toolset consists of an online monitor and
event-driven model. However, we still consider vPathan offline log analyzer. The online monitor continuously
as a widely applicable and general solution, because thigs which thread performsseend orr ecv system call
dispatcher-worker thread model is the dominant archi-over which TCP connection. The offline log analyzer
tecture among mainstream software. The wide adoptioparses logs generated by the online monitor to discover
of the dispatcher-worker thread model is not accidentalrequest-processing paths and the performance character-
Consider, for example, common middleware platformsistics at each step along these paths.
such as J2EE, where threads are managed by the mid- The online monitor tracks network-related thread ac-
dleware and used to execute user code written by differtivities. This information helps infer the intra-node
ent programmers. Because the middleware cannot makeausality of the form “processing an incoming message
strong assumptions about the user code’s behavior (e.gX triggers sending an outgoing message It also
blocking or not), it is simplest and safest to adopt thetracks the identity of each TCP connection, i.e., the four-
dispatcher-worker thread model. element tuplésource_I P, source_port, dest_IP, dest_port)

The SEDA model has been widely discussed withinthat uniquely identifies a live TCP connection at any mo-
the research community, but no consensus about its suitnent in time. This information helps infer inter-node
ability has been reached (see Welsh'’s discussion in [33])causality, i.e., messagg sent by a component corre-
Moreover, wide adoption of the SEDA model in main- sponds to messag€ received by another component.
stream software is yet to be reported. The online monitor is implemented in Xen 3.1.0 [5]

The pure event-driven model in Figure 3 is rarely usedrunning on x86 32-bit architecture. The guest OS is
in real applications. The Flash Web server [18] is oftenLinux 2.6.18. Xen’s para-virtualization technique modi-
considered as a notable example that adopts the everfies the guest OS so that privileged instructions are han-
driven model, but Flash actually uses a hybrid betweerdled properly by the VMM. Xen uses hypercalls to hand
event-driven and multi-threaded programming modelscontrol from guest OS to the VMM when needed. Hy-
In Flash, a single main thread does all non-blocking netpercalls are inserted at various places within the modified
work I/0 operations and a set of worker threads do block-guest OS. In Xen’s terminology, a VM is calledda-
ing disk I/O operations. The event-driven model is notmain. Xen runs a special domain call@main0, which
yet popular in real applications and there is considerexecutes management tasks and performs 1/O operations
able consensus in the research community that it is diffion behalf of other domains.
cult to program and debug applications based on a pure Below we first describe how vPath’s online monitor
event-driven model. Similar sentiments were expressetracks thread activities and TCP connections, and then
by Behren et al. [6], who have had extensive experiencelescribe the offline log analyzer.
programming a variety of applications using the event- o .
driven approach. 3.1 Monitoring Thread Activities

Furthermore, even the frequently-cited performance vPath needs to track which thread perfornsead or
advantages of the event-driven model are questionable inecv system call over which TCP connection. If thread
practice, as itis extremely hard to ensure that a thread ascheduling activities are visible to the VMM, it would
tually never blocks. For example, the designers of Flastbe easy to identify the running threads. However, unlike
themselves observed that the supposedly never-blockingrocess switching, thread context switching is transpar-
main thread actually blocks unexpectedly in the “find ent to the VMM. For a process switch, the guest OS has
file” stage of HTTP request processing, and subsequentlio update the CR3 register to reload the page table base
published multiple research papers [22, 23] describingaddress. This is a privileged operation and generates a
how they solved the problem by hacking the operatingtrap that is captured by the VMM. By contrast, a thread
system. Considering the excellent expertise of the Flaslsontext switch is not a privileged operation and does not
researchers on this subject and the relatively small codeesult in a trap. As a result, it is invisible to the VMM.



Luckily, this is not a problem for vPath, because 3.2 Monitoring TCP Connections
vPath's task is actually simpler. We only need informa- 5. o Tcp send or receive system call, in addition

tion about currently active thread when a network sendy, jgentifying the thread that performs the operation,
or receive operation occurs (as opposed to fully discoverypaih also needs to log the four-element tygberce IP,

ing thread-schedule orders). Each thread has adedicat%gurce,port, dest IP, dest_port) that uniquely identifies
stack within its process’s address space. It is unique to Tcp connection. This information helps match a
the thread throughout its lifetime. Thﬁs suggests that the,o g operation in the message source component with
VMM could use the stack address in a system call (o corresponding receive operation in the message des-

identify the calling thread. The x86 architecture uses thg;,ation component. The current vPath prototype adds
EBP register for the stack frame base address. Depend; pyhereal in the guest OS to deliver this information

ing on the function call depth, the content of the EBP gown to the VMM. Upon entering a system call of in-

may vary on each system call, pointing to an address ifgregt the modified guest OS maps the socket descriptor

the thread's stack. Because the stack has a limited size,, per into(source 1P, source port, dest IP, dest_port)
only the lower bits of the EBP register vary. Therefore,and then invokes the hypercall to inform the VMM.

we can get a stable thread identifier by masking out the  1ig approach works well in the current prototype, and

lower bits of the EBP register. it modifies fewer than 100 lines of source code in the
Specifically, vPath tracks network-related thread ac_guest OS (Linux). However, our end goal is to imple-
tivities as follows: _ment a pure VMM-based solution that do_es not mod-
ify the guest OS at all. Such a pure solution would be
) easier to deploy in a Cloud Computing platform such as
° Th_e VMM intercepts all system calls that senc_i or re-Ec2 [2], because it only modifies the VMM, over which
ceive TCP messages. Relevant system_calls in Linupe platform service provider has full control.
are read(), wite(), readv(), witev(), As part of our future work, we are exploring several
recv(), send(), recvfron(), sendto(), techniques to avoid modifying the guest OS. Our early
recvinsg(), sendmsg(), andsendfile(). In-  resyits show that, by observing TCP/IP packet head-
tercepting system calls of@ara-virtualized Xen VM grs in Domain0, four-element TCP identifiers can be
is possible because they useit  80h”and this soft-  mapped to socket descriptor numbers observed in sys-
ware trap can be intercepted by VMM. tem calls with high accuracy. Another alternative tech-
e On system call interception, vPath records the curnique we are exploring is to have the VMM keep track
rent DomainID, the content of the CR3 register, andof the mapping from socket descriptor numbers to four-
the content of the EBP register. DomainID identi- element TCP identifiers, by monitoring system calls that
fies a VM. The content of CR3 identifies a process inaffect this mapping, includingi nd(), accept (),
the given VM. The content of EBP identifies a thread connect (), andcl ose().
within the given process. vPath uses a combination of .
DomainID/CR3/EBP to uniquely identify a thread. ~ 3-3  Offline Log Analyzer
The offline log analyzer parses logs generated by the
By default, system calls in Xen 3.1.0 are not inter- online monitor to extract request-processing paths and
cepted by the VMM. Xen maintains an IDT (Interrupt their performance characteristics. The analyzer’s algo-
Descriptor Table) for each guest OS and the 0x80th entithm is shown in Algorithm 1. The format of input data
try corresponds to the system call handler. When &s shown in Figure 5.
guest OS boots, the 0x80th entry is filled with the ad- On Line 2 of Algorithm 1, it verifies whether the trace
dress of the guest OS’s system call handler through théle isin a correct format. On Line 3, it merges the system
set _trap_t abl e hypercall. In order to intercept sys- call log and the hypercall log into a single one for ease
tem calls, we prepare our custom system call handler@f processing. All events are then read into linked Ii5ts
register it into IDT, and disable direct registration of the on Line 4.
guest OS system call handler. On a system call, vPath Events are normalized prior to actual processing. If an
checks the type of the system call, and logs the evengpplication-level message is large, it may take multiple
only if it is a network send or receive operation. system calls to send the message. Similarly, on the des-
tination, it may take multiple system calls to read in the
Contrary to the common perception that system callentire message. These consecusigad orr ecv events
interception is expensive, it actually has negligible im-logically belong to a single operation. On Line 5, mul-
pact on performance. This is because system calls aliple consecutivesend events are merged into a single
ready cause a user-to-kernel mode switch. vPath code i3ne. Consecutiveecv events are merged similarly.
only executed after this mode switch and does not incur On Line 6, UPDATERECVTIME performs another type
this cost. of event normalization. It updates the timestamp of a



Format of Data Obtained Through System Call Interception

Algorithm 1 THE OFFLINE LOG ANALYZER:

Time
Stamp

Event # Domain#‘ CR3 ‘ EBP ‘ EAX ‘ EBX ‘

Format of Data Obtained Through Hypercall in Syscall Handler
Event # OP Type| Socket Local Remote
(RIS) Descriptor #|IP Addr & Port| IP Addr & Port

Domain #

Example

0733 Domf1 002780  cr3:04254000 ebp:bfe37034  eax:3
0734 R Dom1 sd:12 L:130.203.8.24:41845 R:130.203.8.25:8009 +———
0735 Dom1 002781  cr3:04254000 ebp:bfe34b34 eax:146 ebx:11

0736 S Dom1 sd:11 L:130.203.8.24:80 R:130.203.65.112:2395

Figure 5: Format of vPath log data. The example shows
two system calls (events 0733 and 0735). For each sys-
tem call, a hypercall immediately follows (events 0734
and 0736). The IP and port information provided by the
hypercall helps identify TCP connections. In the sys-
tem call log, EAX holds system call number. EBX holds
socket descriptor number foead, andwr i t e. If EAX

is 102 (i.e.socket cal ), then EBX is the subclass of
the system call (e.gcsend orr ecv). 14:

recv event to reflect the end of the receive operation 15
rather than the beginning of the operation. The vPath
online monitor records a timestamp for each system call
of interest when it is invoked. When a thread sends out
a request message and waits for the reply, this event

N
Lo

state for a long time. To accurately calculate the response
time of this remote invocation from the caller side, we
need to know when theecv operation returns rather
than when it starts. Forrecv system call- performed

by a threadl’, we simply use the timestamp of the next 265

system call invoked by thredt as the return time af.
The operation from Line 10 to 17 pairs ups&nd

tially by PAIRUPFOLLOWINGS. 33:
Inside ANDREMOTEMATCHINGEVENT on Line 13, 34

it uses a four-element tuplésource_IP, source_port, 35:
dest_IP, dest_port) to match a TCP connectiafap, ob- 36
served on a component with a TCP connectioticp, 37
observed on another component Supposer; is the 38
client side of the TCP connection. The fisstnd op- 39
eration overtcp; observed ore; matches with the first 40
41:

r ecv operation ovetcp, observed oy, and so forth.

There is one caveat though. Because port numbers aré?:

© o NGO A ®

2:
23:
24:

27:

28:
event at the message source with the correspondingg:

recv event at the message destination. Once a pair ofo:
matching events,. ande, are identified, the same TCP 3.
connection’s events after. ande, are paired up sequen- 3.

Input: Log file F; for application procesg;, 1 < i < n.
Output: Linked lists£; of events, where every event is
tagged with the identifier of the user request that triggers
the event.

1:
ebx:12 2:

for each processdo
CHECKDATAINTEGRITY(F;)
PREPROCES®ATA (F;)
L; «—BUILDEVENTLIST(F;)
MERGECONSECUTIVEEVENTS(L;)
UPDATERECVTIME(L;)
Q «— QU FINDFRONTENDPROCESSL,)

end for

/* Pair up everysend andr ecv events. */

10: for each processdo

for each event,. with e..peer = NULL do
d «—FINDPROCESSe...remote_IP)
eq < FINDREMOTEMATCHINGEVENT(d,
ec.local I\P&port, e..remote_IP&port)
PAIRUPFOLLOWINGS(e., €4)
end for

17: end for
18: /* Assign a unique ID to each user request. */
19: R < IDENTIFYREQUESTSQ)

i )
recorded by vPath and the thread may wait in the blockeéoj for each requestid € R do

while (any event is newly assignedl do
/* Intra-node discovery. */
for each processdo
(es,e;) «—FINDREQUESTBOUNDARY(c, 1)
for all eventse;, within (e;, e;) do
if ex.thread_id = e;.thread_id then
ex.request_id «— r
end if
end for
end for
/* Inter-node discovery. */
for each processdo
(e;,€e;) < FINDREQUESTBOUNDARY (¢, 1)
for all eventse;, within (e;, e;) do
if ex.request_id = r then
e; «—GETREMOTEMATCHINGEVENT(e,)
ej.request_id «— r
end if
end for
end for
end while
end for

reused across TCP connections, it is possible that two

TCP connections that exist at different times have identions, the ephemeral port used by the client side of a

tical (source_IP, source_port, dest_IP, dest_port). For ex-
ample, two TCP connectiorisp, andtcp), that exist on
co at different times both can potentially match wittp,

TCP connection is reused only after the entire pool of
ephemeral ports have been used, which takes hours or
days even for a busy server. This allows a simple solu-

onc;. We use timestamps to solve this problem. Notetion in vPath. Betweercp, andtcpl, we matchtcp;
that the lifetimes oftcp, andtcpy, do not overlap and  with the one whose lifetime is closest#ep;. This solu-

must be far apart, because in modern OS implementa-
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Figure 6: The topology of TPC-W. the TPC-W benchmark [27], which represents an online

bookstore developed at New York University [31]. Our
r{:hosen implementation of TPC-W is a fully J2EE com-
pliant application, following the “Session Facade” design
pattern. The front-end is a tier of Apache HTTP servers
configured to load balance the client requests among

- : Boss servers in the middle tier. JBoss 3.2.8SP1 [14]
signed unique IDs. It goes through events and looks for] ) . . .
foreign IP addresses that do not belong to VMs moni-'> used in the middle tier. MySQL 4.1 [17] is used for

tored by vPath. Events with foreign IP addresses are ger]f-he back-end database tier. The topology of our TPC-W

erated at front-end components and represent entry/ex?’[emp Is shown in Figure 6. We use the workload gener-

points of user requests ator provided with TPC-W to simulate multiple concur-
Starting from Line 20, paths are constructed by pro—rent clients accessing the application.

cessing user requests one by one. The algorithm consist Thr']s :Q’ritu% IS ‘1 h(;t_?_r_lf)geneous_ test. enV|ror1C:men(tj for
of two f or loops, which implements intra-node discov- vPath. The Apache server is written in C and is

ery and inter-node discovery, respectively. In the ﬁrstconflgured to use a multi-process architecture. JBoss is

loop, the starting event and ending event of a given relvritten in Java and MySQL is written in C.

guest are identified throughND REQUESTBOUNDARY. RUBIS: RUBIS [24] is an e-Commerce benchmark de-
All events between them and with the same thread IDveloped for academic research. It implements an online
are assigned the same user request ID. In the secoraliction site loosely modeled after eBay, and adopts a
loop (for inter-node discovery),IRDREQUESTBOUND-  two-tier architecture. A user can register, browse items,
ARY is called again to find the starting event and thesell items, or make a bid. It is available in three different
ending event of every user request. For each eventersions: Java Servlets, EJB, and PHP. We use the PHP
er that belongs to the user requesteXREMOTEM-  version of RUBIS in order to differentiate from TPC-W,
ATCHINGEVENT uses information computed on Line 13 which is written in Java and also does e-Commerce. Our
to find the matching eveny at the other end of the TCP setup uses one VM to run a PHP-enabled Apache HTTP
connection. Event; is assigned event,'s user request server and another VM to run MySQL.

ID. This process repeats until every event is assigned f1ediawiki:
user request ID.

tion does not require very accurate clock synchronizatio
between hosts, because the lifetimesspf, andtcpl, are
far apart.

On Line 19, all user requests are identified and as

MediaWiki [16] is a mainstream open
source application. It is the software behind the pop-
. . ular Wikipedia site (wikipedia.org), which ranks in the
4 Experimental Evaluation top 10 among all Web sites in terms of traffic. As ma-
Our experimental testbed consists of Xen VMMs ture software, it has a large set of features, e.g., support
(v3.1.0) hosted on Dell servers connected via Gigabifor rich media and a flexible namespace. Because it is
Ethernet. Each server has dual Xeon 3.4 GHz CPUs witlused to run Wikipedia, one of the highest traffic sites on
2 MB of L1 cache and 3 GB RAM. Each of our servers the Internet, its performance and scalability have been
hosts several virtual machines (VMs) with each VM as-highly optimized. It is interesting to see whether the op-
signed 300 MB of RAM. We use theentop utility in timizations violate the assumptions of vPath (i.e., syn-
Domain0 to obtain the CPU utilization of all the VMs chronous remote invocation and event causality observ-
running on that server. able through thread activities) and hence would fail our
.. technique. MediaWiki adopts a two-tier architecture and
4.1 Applications is written in PHP. Our setup uses one VM to run PHP-
To demonstrate the generality of vPath, we evaluatenabled Apache and another VM to run MySQL.
vPath using a diverse set of applications written in diﬁer-VApp: VApp is our own prototype application. It is an

ent programming languages (C, Java, and PHP), devels,eme test case we designed for vPath. It can exercise
oped by communities with very different backgrounds. \pat with arbitrarily complex request-processing paths.
TPC-W: To evaluate the applicability of vPath for re- It is a custom multi-tier multi-threaded application writ-
alistic workloads, we use a three-tier implementation often in C. Figure 7 shows an example of a three-tier vApp
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Configuration

Response time in seconds
(Degradation in %)

Throughput(reg/sec)
(Degradation in %)

Average [ 90" percentile Average
Vanilla Xen 4.45 11.58 4.88
vPath 4.72 (6%) 12.28 (6%) 4.59 (6%)
App Logging |[10.31 (132%) | 23.95 (107%) 4.10 (16%)

Overhead of vPath on TPC-W. Table 1 presents the
average and0'" percentile response time of TPC-W
benchmark as seen by the client, cateringl® con-
current user sessions. For all configuratioh®) con-
current sessions cause néf% CPU utilization at the

database tier. Table 1 shows that vPath has low over-

Table 1: Response time and throughput of TPC-W. “Apphead. It affects throughput and average response time by

Logging” represents a log-based tracking technique tha@nly 6%. By contrast, “App Logging” decreases through-
turns on logging on all tiers of TPC-W. put by 16% and increases the average response time by

as high as 132%. The difference in response time is

topology. vApp can form various topologies, with the de- More clearly shown in Figure 8, where vPath closely
sired number of tiers and the specified number of serverfollows “vanilla Xen®, whereas "App Logging” signifi-
at each tier. When a server in one tier receives a requestantly trails behind.
it either returns a reply, or sends another request to one Figure 9 shows the CPU utilization of the JBoss tier
of the servers in the downstream tier. When a server rewhen the database tier is saturated. vPath has negligi-
ceives a reply from a server in the downstream tier, it ei-ble CPU overhead whereas “App Logging” has signif-
ther sends another request to a server in the downstreai@ant CPU overhead. For instance, vPath and “vanilla
tier, or returns a reply to the upstream tier. All deci- Xen” have almost identicap0’" percentile CPU uti-
sions are made based on specified stochastic processiation (13.6% vs. 14.4%), whereas theé" percentile
so that it can generate complex request-processing pat§gPU utilization of “App Logging” is 29.2%, more than
with different structures and path lengths. twice that of vPath. Thus, our technique, by eliminating
We also developed a vApp client to send requests téhe need for using application logging to trace request-
the front tier of the vApp servers. The client can be Processing paths, improves application performance and
configured to emulate multiple concurrent sessions. Ageduces CPU utilization (and hence power consumption)
request messages travel through the components of tHer data centers. Moreover, vPath eliminates the need to
vApp server, the identifiers of visited components are apfepeatedly write custom log parsers for new applications.
pended to the message. When a reply is finally returneérinally, vPath can even work with applications that can-
to the client, it reads those identifiers to precisely reconnot be handled by log-based discovery methods because
struct the request-processing path, which serves as tHBose applications were not developed with this require-
ground truth to evaluate vPath. The client also tracks thénentin mind and do not generate sufficient logs.
response time of each request, which is compared wit

the response time estimated by vPath, ta)verhead of vPath on RUBIS. Due to space limita-

tion, we report only summary results on RUBIS. Table 2
shows the performance impact of vPath on RUBIS. We
4.2 Overhead of vPath use the client emulator of RUBIS to generate workload.
We first quantify the overhead of vPath, comparedWe set the number of concurrent user sessions to 900 and
with both vanilla (unmodified) Xen and log-based track- set user think time to 20% of the original value in order
ing techniques [32, 25]. For the log-based techniquesto drive the CPU of the Apache tier (which runs PHP) to
we turn on logging on all tiers of TPC-W. The experi- 100% utilization. vPath imposes low overhead on RU-
ment below uses the TPC-W topology in Figure 6. BiS, decreasing throughput by only 5.6%.
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Table 2: Performance impact of vPath on RUBIS. ) ) (5
Response time (insec)  Throughput (reg/sec) (a) Simple path (b) Complex path
Configuration Avg(Std.) [ Overhead Avg(Std.) [Overhead
VanillaXen  [[1.69(.053) 2915.1(88.9) Figure 10: Examples of vVApp’s request-processing paths
(1) Intercept Sysca|1.70(.063)| .7%  [2866.6(116.5)| 1.7% discovered by vPath. The circled numbers correspond to
(2) Hypercall 1.75(.050)| 3.3% |2785.2(104.6)| 4.5% VM IDs in Figure 7.
(3) Transfer Log  |(2.02(.056)| 19.3% | 2432.0(58.9) | 16.6%
(4) Disk Write 2.10(.060)| 23.9% | 2345.4(62.3) | 19.1% 1.00 TR
0.90 el
Table 3: Worst-case overhead of vPath and breakdown 0.80 ,g"s
of the overhead. Each row represents the overhead of the 0.70 o5
previous row plus the overhead of the additional opera- L 060
tion on that row. Q os0
0.40 .
Worst-case Overhead of vPath. The relative over- 0.30 y Eti
. ) . . stimated by vPath -«
head of vPath depends on the application. We are in- 0.20 Measured by vApp Client o
terested in knowing thevorst-case overhead (even if the 0.10 A
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The relative overhead of vPath can be calculated as

vip, wherev is vPath’s processing time for monitoring

a network send or receive operation, ani the appli- . ) , . .
cation’s processing time related to this network opera—':Igure L1: CDF of vApp’s response time, as estimated

tion, e.g., converting data retrieved from the databascg)y vPath and actually measured by the vApp client.

into HTML and passing the data down the OS kernel’'s .
network stack. vPath’s relative overhead is highest for aﬁogegher, the_ operations of vPath degrade thr_o uq‘hput_by
application that has the lowest processing tpm@Ve use 19'.1 /0;, This is the wo_rst-_case for a contrived tiny a.pph_—
a tiny echo program to represent such a worst-case app“:_atmn. For real ap:)pllcanons, throughpug degradan_on is
cation, in which the client sends a one-byte message tWUCh lower, only 6% for TPC-W and 5.6% for RUBS.
the server and the server echoes the message back with-5 Request-Processing Paths of vApp
out any processing. In our experiment, the client creates
50 threads to repeatedly send and receive one-byte mes-Our custom application VApp is a test case designed
sages in a busy loop, which fully saturates the server'so exercise vPath with arbitrarily complex request-
CPU. processing paths. We configure vApp to use the topol-
When the application invokes a network send or re-0gy in Figure 7. The client emulates 10-30 concurrent
ceive system call, vPath performs a series of operationgjser sessions. In our implementation, as a request mes-
each of which introduces some overhe&t) intercept-  sage travels through the vApp servers, it records the ac-
ing system call in VMM, (2) using hypercall to deliver tual request-processing path, which serves as the ground
TCP information (src_IP, src_port, dest_IP, dest_port)  truth to evaluate vPath.
from guest OS to VMM(3) transferring log data from The request-processing path of vApp, as described
VMM to DomainO, and(4) DomainO writing log datato in 4.1, is designed to be random. To illustrate the abil-
disk. These operations correspond to different rows inty of our technique to discover sophisticated request-
Table 3, where each row represents the overhead of thgrocessing paths, we present two discovered paths in Fig-
previous row plus the overhead of the additional operaure 10. The simple path consists of 2 remote invocations
tion on that row. in a linear structure, while the complex path consists of 7
Table 3 shows that intercepting system calls actuallyinvocations and visits some components more than once.
has negligible overhead (1.7% for throughput). The In addition to discovering request-processing paths,
biggest overhead is due to transferring log data fronvPath can also accurately calculate the end-to-end re-
VMM to Domain0O. This step alone degrades through- sponse times as well as the time spent on each tier along
put by 12.1%. Our current implementation uses VMM's a path. This information is helpful in debugging dis-
printk() to transfer log data tdomain0, and we are tributed systems, e.g., identifying performance bottle-
exploring a more efficient implementation. Combined necks and abnormal requests. Figure 11 compares the
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Figure 12: Typical request-processing paths of TPC-W. Figure 13: Typical request-processing paths of RUBIS.

end-to-end response time estimated by vPath with thaabout 200 invocations. These two types represent radi-
actually measured by the vApp client. The response timeally different TPC-W requests.
estimated by vPath is almost identical to that observed by The second interesting observation with TPC-W is
the client, but slightly lower. This small difference is due that, both JBoss and Apache send out replies in a pipeline
to message delay between the client and the first tier ofashion (see Figure 12). For example, after making the
VApp, which is not tracked by vPath because the clientast invocation to MySQL, JBoss reads in partial reply
runs on a server that is not monitored by vPath. from MySQL and immediately sends it to Apache. JBoss
We executed a large number of requests at differenthen reads and sends the next batch of replies, and so
session concurrency levels. We also experimented witfiorth. This pipeline model is an effort to reduce memory
topologies much larger than that in Figure 7, with morebuffer, avoid memory copy, and reduce user-perceived
tiers and more servers in each tier. All the results showesponse time. In this experiment, once JBoss sends the
that vPath precisely discovers the path of each and everfjrst partial reply to Apache, it no longer makes invoca-

executed request. tions to MySQL (it only reads more partial replies from
_ MySQL for the previous invocation). vPath is general
4.4 Request-Processing Paths of TPC-W enough to handle an even more complicated case, where

The three-tier topology (see the top of Figure 12) of JBOSS sends the first partial reply to Apache, and then

the TPC-W testbed is static, but its request—processinﬁakes more |nvogat|ons to MySQL in order to 'Te”'e"e
paths are dynamic and can vary, depending on whic qta for construct!ng more replies. EY‘?F‘ for .th's com-
JBoss server is accessed and how many queries are e@lcated’ hyp_othetlcal case, all the activities W!” sb
changed between JBoss and MySQL. The TPC-W Clien{:orrectly assigned to a single request-processing path.
generates logs that include the total number of requests, . .
current session counts, and individual response time o S Ggg;ﬁ'gﬁrocessmg Paths of RUBIS and
each request, which serve as the ground truth for evaluat-
ing vPath. In addition to automated tests, for the purpose Unlike TPC-W, which is a benchmark intentionally
of careful validation, we also conduct eye-examinationdesigned to exercise a breadth of system components
on some samples of complex request-processing pathsssociated with e-Commerce environments, RUBIS and
discovered by vPath and compare them with informationMediaWiki are designed with practicality in mind, and
in the application logs. their request-processing paths are actually shorter and
vPath is able to correctly discover all request- simpler than those of TPC-W.
processing paths with 100% completeness and 100% ac- Figure 13 shows the typical path structure of RUBIS.
curacy (see Section 2.1 for the definition). We started ouwith vPath, we are able to make some interesting ob-
without knowing how the paths of TPC-W would look. servations without knowing the implementation details
From the results, we were able to quickly learn the pathof RUBIS. We observe that a client request first triggers
structure without any knowledge of the internals of TPC-three rounds of messages exchanged between Apache
W. Typical request-processing paths of TPC-W have theand MySQL, followed by the fourth round in which
structure in Figure 12. Apache retrieves a large amount of data from MySQL.
We observe two interesting things that we did notThe path ends with a final round of messages exchanged
anticipate. First, when processing one request, JBodsetween Apache and MySQL. The pipeline-style par-
makes a large number of invocations to MySQL. Mosttial message delivery in TPC-W is not observed in RU-
requests fall into one of two types. One type makes abouBiS. RUBIS and TPC-W also differ significantly in their
20 invocations to MySQL, while the other type makes database access patterns. In TPC-W, JBoss makes many



small database queries, whereas in RUBIS, Apache rdakes readily available information (e.g., the arrival

trieves a large amount of data from MySQL in a singletime of network packets) as inputs, and infers request-

step (the fourth round). Another important difference isprocessing paths in a “most likely” way. Its accuracy

that, in RUBIS, many client requests finish at Apachedegrades as the workload increases, because activities of

without triggering database accesses. These short reoncurrent requests are mingled together and hard to dif-

guests are about eight times more frequent than the lonfgrentiate. The instrumentation approach may accurately

ones. Finally, in RUBIS, Apache and MySQL make discover request-processing paths, but its applicaldity

many DNS queries, which are not observed in TPC-W. limited due to its intrusive nature. It requires knowledge
For MediaWiki, the results of vPath show that very (and often source code) of the specific middleware or ap-

few requests actually reach all the way to MySQL, while plications in order to do instrumentation.

most requests are directly returned by Apache. This is

because there are many static contents, and even for d%- o

namic contents, MediaWiki is heavily optimized for ef- .1 Statistical Inference

fective caching. For a typical request that changes a wiki

page, the PHP module in Apache makes eight accessesAguilera et al. [1] proposed two algorithms for debug-

to MySQL before replying to the client. ging distributed systems. The first algorithm finds nested
_ _ o RPC calls and uses a set of heuristics to infer the causal-
4.6 Discussion on Benchmark Applications ity between nested RPC calls, e.g., by considering time

We started the experiments with little knowledge of difference between RPC calls and the number of poten-
the internals of TPC-W, RUBIS and MediaWiki. Dur- tial parent RPC calls for a given child RPC call. The sec-
ing the experimentation, we did not read their manualsond algorithm only infers the average response time of
or source code. We did not modify their source code components; it does not build request-processing paths.

bytecode, or executable binary. We did not try to un- WAP5 [21] intercepts network related system calls by
derstand their application logs or write parsers for themdynamically re-linking the application with a customized
We did not install any additional application monitoring system library. It statistically infers the causality be-
tools such as IBM Tivoli or HP OpenView. In short, we tween messages based on their timestamps. By contrast,
did not change anything in the user space. our method is intended to be precise. It monitors thread
Yet, with vPath, we were able to make many inter- activities in order to accurately infer event causality.
esting observations about the applications. Especially, Anandkumar et al. [3] assumes that a request visits dis-

different behaviors of the applications made us Wondertributed components according to a known semi-Markov
in general how to select “representative” applications to P : 9 . S
rocess model. It infers the execution paths of individ-

evaluate systems performance research. TPC-W is o .

widely recognizedle facto e-Commerce benchmark, but lial re_quests by. probabilistically matching them tq the

its behavior differs radically from the more practical RU- footprmts (Q.g.,. t|mesta.mp_ed request messages) using the
maximum likelihood criterion. It requires synchronized

BiS and MediaWiki. This discrepan Id result from S -
S and Media s discrepancy could result fro clocks across distributed components. Spaghetti is eval-

the difference in application domain, but it is not clear . X . .
whether the magnitude of the difference is justified. Weuated through simulation on simple hypothetical process
models, and its applicability to complex real systems re-

leave it as an open question rather than a conclusion. ) :
This question is not specific to TPC-W. For example,maInS an open question.
the Trade6 benchmark [35] developed by IBM models Sengupta et al. [25] proposed a method that takes ap-
an online stock brokerage Web site. We have intimateplication logs and a prior model of requests as inputs.
knowledge of this application. As both a benchmark andHowever, manually building a request-processing model
a testing tool, it is intentionally developed with certain is non-trivial and in some cases prohibitive. In some
complexity in mind in order to fully exercise the rich sense, the request-processing model is in fact the in-
functions of WebSphere Application Server. It would be formation that we want to acquire through monitoring.
interesting to know, to what degree the conclusions inMoreover, there are difficulties with using application
systems performance research are misguided by the inegs as such logs may not follow any specific format and,
tentional complexity in benchmarks such as TPC-W andn many cases, there may not even be any logs available.

Trade6.
ing approach to infer attributes (e.g., thread ID, time, and
5 Related Work Web service endpoint) in application logs that can link
There is a large body of work related to request-activities observed on individual servers into end-to-end
processing path discovery. They can be broadly classipaths. It requires synchronized clocks across distributed
fied into two categories: statistical inference and systemeomponents, and the discovered paths are only statisti-
dependent instrumentation. The statistical approacltally accurate.

Our previous work [32] takes an unsupervised learn-



5.2 System-dependent Instrumentation handle the case where intra-node causality is caused by

Magpie [4] is a tool-chain that analyzes event |ogsthread synchronization, e.g., a di.spatcher thread wakes
to infer a request's processing path and resource corfP a worker thread to process an incoming request. This

sumption. It can be applied to different applications but'S & Wide used programming pattern in thread pooling.
its inputs are application dependent. The user needs tg Concluding Remarks
modify middleware, application, and monitoring tools ) . .
in order to generate the needed event logs. Moreover, e studied the important problem of finding end-to-
the user needs to understand the syntax and semanti8d request-processing paths in distributed systems. We
of the event logs in order to manually write an eventProposed a method, calleath, that can precisely dis-
schema that guides Magpie to piece together events diOVer r_equest—processmg paths for most of. the_ exist-
the same request. Magpie does kernel-level monitoring?d Mainstream software. Our key observation is that
for measuring resource consumption, but not for discovn€ problem of request-processing path discovery can be
ering request-processing paths. radically simplified by exploiting programming patterns
Pip [20] detects problems in a distributed system byW|der a_dopted_ln mainstream §0ft_ware: (1) synchronous
finding discrepancies between actual behavior and ex@mote invocation, and (2) assigning a thread to do most
pected behavior. A user of Pip adds annotations to ap®f the processing for an incoming request. _
plication source code to log messaging events, which are Following these.observatlons to infer e\(ent causality,
used to reconstruct request-processing paths. The us@Hr method can discover request-processing paths from
also writes rules to specify the expected behaviors of th&ninimal information recorded at runtime—uwhich thread

requests. Pip then automatically checks whether the ag2€rforms a send or receive system call over which TCP
plication violates the expected behavior. connection. This information can be obtained efficiently

Pinpoint [9] modifies middleware to inject end-to-end I ither OS kernel or VMM without modifying any user-

request IDs to track requests. It uses clustering and st&sPace code. _
tistical techniques to correlate the failures of requests t W& demonstrated the generality of vPath by evaluat-
the components that caused the failures. ing with a diverse set of applications (TPC-W, RUBIS,

Chen et al. [8] used request-processing paths as thMediaWiki, anq the home-grown vApp) written in differ-
key abstraction to detect and diagnose failures, and t§Nt Programming languages (C, Java, and PHP). vPath's

understand the evolution of a large system. They studie@!in® monitor is lightweight. We found that activating
three examples: Pinpoint, ObsLogs, and SuperCall. AllvPath affects the throughput and average response time
of them do intrusive instrumentation in order to discover®’ TPC-W by only 6%
re%l:esé-prfé%s]sing paths. de inst ton 1o Acknowledgments
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