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Abstract
Emerging energy-aware initiatives (such as billing of power usage based onde-couplingbetween elec-
tricity sales and utility profits/fixed-cost recovery) render current capacity planning practices based on
heavy over-provisioning of power infrastructureunprofitable for data centers. We explore a combina-
tion of statistical multiplexing techniques (includingcontrolled under-provisioning and overbooking)
to improve the utilization of the power hierarchy in a data center. Our techniques are built upon a
measurement-driven profiling and prediction technique to characterize key statistical properties of the
power needs of hosted workloads and their aggregates. As a representative result from our evaluation
on a prototype data center, by accurately identifying the worst-case needs of hosted workloads, our
technique is able to safely operate 2.5 times as many serversrunning copies of the e-commerce bench-
mark TPC-W as allowed by the prevalent practice of using face-plate ratings. Exploiting statistical
multiplexing among the power usage of these servers along with controlled under-provisioning by
10% based on tails of power profiles offers a further gain of 100% over face-plate provisioning. Re-
active techniques implemented in the Xen VMM running on our servers dynamically modulate CPU
DVFS-states to ensure power draw below safe limits despite aggressive provisioning. Finally, infor-
mation captured in our profiles also provides ways of controlling application performance degradation
despite the above under-provisioning: the95th percentile of TPC-W session response time only grew
from 1.59 sec to 1.78 sec.

1 Introduction and Motivation

To accommodate modern resource-intensive high-performance applications, large-scale data centers
have grown at a rapid pace in a variety of domains ranging fromresearch labs and academic groups to
industry. The fast-growing power consumption of these platforms is a major concern due to its impli-
cations on the cost and efficiency of these platforms as well as the well-being of our environment. By
2005, the energy required to power and cool data center equipment accounted for about 1.2% of total
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U.S. electricity consumption according to a report released by the Lawrence Berkeley National Lab-
oratory and sponsored by chip manufacturer AMD. Gartner, the IT research and advisory company,
estimates that by 2010, about half of the Forbes Global 2000 companies will spend more on energy
than on hardware such as servers [17]. Furthermore, Gartnerestimates that the manufacture, use, and
disposal of IT equipment, a large share of which results fromdata centers, accounts for 2% of global
CO2 emissions which is equivalent to the aviation industry.

The rapid rise in the number of data centers and the growing size of their hardware-base (especially
the number of servers) are the primary causes of their increasing power needs. As an example, a New
York Times article in June 2006 reported that Google had approximately 8,000 servers catering to
about 70 Million Web pages in 2001, with the number growing to100,000 by 2003. Their estimate
put the total number of Google servers (spread over 25 data centers) to be around 450,000 at the
time. Similarly, Microsoft’s Internet services were beinghoused in around 200,000 servers with the
number expected to hit 800,000 by 2011. While the power consumption per-unit of hardware has
contributed a much smaller percentage to this growth, continuing miniaturization at multiple levels
(ranging from chips, servers, racks, to room) within the data center has necessitated the procurement
of higher capacity cooling systems to deal with the growing power densities.

These trends have severe implications on the total cost of operation (TCO)—deployment-time
costs as well as a variety of recurring costs—of a data center. The impact on TCO due to higher
bills paid to the electricity provider are easy to appreciate. At a rating of around 250 Watts for a
server (which is on the lower end of peak power for a dual CPU system, with 1-2 GB memory, a disk,
and a network card), a data center with 20K-40K servers consumes between 5-10 Megawatts just
towards powering these servers (discounting cooling system costs.) Assuming a cost of 10c/KWH,
this amounts to $4.38M-$8.76M annually expended towards keeping these servers constantly powered
for a single such data center.Higher power consumption, however, also hurts the TCO in other less
obvious ways.

Existing practices for capacity planning of the power infrastructure within data centers employ sig-
nificant degrees of over-provisioning at multiple levels ofthe spatial hierarchy, ranging from the power
supplies within servers [24], Power Distribution Units (PDUs) supplying power to servers, storage
equipment, etc., to even higher-level Uninterrupted PowerSupply (UPS) sub-stations [15]. This over-
provisioning is done to ensure uninterrupted and reliable operation even during episodes of excessive
power draw as well as to accommodate future upgrades/additions to the computational/storage/networking
equipment pool in the data center.

Such over-provisioning can prove unprofitable to the data center in two primary ways. The first
and more significant reason emerges from ongoing efforts to promote energy-efficient operation and
discourage wasteful over-provisioning of power supply vianovel billing mechanisms. Currently, elec-
tricity providers make more money by selling more electricity and they make less money by helping
their customers use less energy. Consequently, this disincentive impairs their willingness and ability
to promote energy efficiency, despite its benefits to consumers’ bills, electrical reliability, national
security and the environment. This realization has led to proposals to remove the disincentives via
“de-coupling,” which means implementing a regulatory ratepolicy that breaks the link between elec-
tricity sales, on the one hand, and utility profits and fixed-cost recovery, on the other [19]. According
to a USNews article in May 2008, while California pioneered de-coupling as early as the 1970s, Con-
necticut, Idaho, New York, and Vermont had also chosen de-coupling by 2007, and a dozen other
states now are considering it [23]. Consequently, in the nearfuture, a data center operating signifi-
cantly below its provisioned power capacity can expect to pay higher recurring electricity costs. A
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Figure 1: Illustration of the evolution of power capacity and demand in a hypothetical data center.
Also shown is the evolution of provisioned capacity based ona prevalent practice such as using the
face-plate ratings of devices.

second, perhaps comparatively minor, concern arises due tothe excess costs expended towards procur-
ing power infrastructure with higher capacity (including alarger number of power supply elements)
than needed.

Decisions related to the provisioning of power infrastructure must be made not only at installation
time but on a recurring basis to cope with upgrades. Figure 1 illustrates the evolution of the power
demand and capacity in a data center. As shown, there are two “head-rooms” between power demand
and capacity. The first head-roomH1 is intended to ensure the data center can accommodate fore-
seeable additions/upgrades (as shown by the curve labeled “Peak Power Consumption (Faceplate)” in
Figure 1) to its hardware base. The second head-roomH2, our focus in this research, results due to
current capacity planning practices that significantly over-estimate the power needs of the data center.
A number of recent studies on power usage in data centers provide evidence of such over-provisioning
at various power elements [15, 16, 24]. Building upon these insights, we plan to carefully understand
the power usage of data center workloads in order to develop aprovisioning technique that addresses
the headroomH2.

While provisioning closer to demand reduces both installation/upgrade as well as recurring costs,
it does so at the risk of increased episodes of degraded performance/availability. This degradation can
occur due to one or more of the following: (i) a subset of the hardware may simply not get powered
up due to insufficient power supply (as happened with an ill-provisioned $2.3 Million Dell cluster
at the University at Buffalo, where two-thirds of machines could not be powered on till a $20,000
electrical system upgrade was undertaken [9]), (ii) one or more fuses give way during an episode of
surge in power drawn disrupting the operation of applications hosted on associated servers, and (iii)
the thermal system, faced with constrained power supply, triggers shut/slow down of some devices.
Any improvements in power provisioning must carefully trade-off the resulting cost savings against
such performance degradation. Additionally, to realize such improvements, a data center must employ
mechanisms that prevent (make statistically negligible) episodes of types (i)-(iii). In this paper, we
develop a system that effectively provisions power while addressing these concerns.

In general terms, it is our contention that understanding the power usage behavior of hosted ap-
plications and employing techniques that are aware of theseidiosyncrasies can allow a data center to
make more informed provisioning decisions compared to existing techniques. To validate these ideas,
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we explore a combination of several complementary approaches.

Research Contributions. The contribution of our research is three-fold.

• Automatic derivation of power needs of aggregates.We develop a profiling technique to de-
rive statistical descriptions (called power profiles) of the power usage of hosted applications. We
then develop prediction techniques that describe the powerusage at different levels in the hierarchy
based on profiles of applications placed under these levels (e.g., the power usage of a PDU supply-
ing power to servers hosting a given set of applications.) Finally, we identify the limits posed by
fuses throughout the hierarchy in the form ofsustained power budgetsso power usage of aggregates
can be compared against these in systematic and statistically meaningful ways.

• Yield management inspired provisioning techniques.We exploit a number of statistical prop-
erties of power usage that our profiles reveal to propose improved provisioning techniques. First,
controlled under-provisioningbased on the tails of power profiles of hosted workloads exploits
rarely occurring peak power needs. Second, identification of statistical multiplexing effectsamong
workloads consolidated under a power supply element is usedto carefullyoverbookpower supply
capacity. Finally, evidence of self-similarity in the power usage of an important class of work-
loads suggests that these under-provisioning related gains are likely to result not just for PDUs
that servers are connected to, but even at higher levels of aggregation. Although these techniques
are inspired by literature on yield management as employed in such diverse domains as the air-
line industry [32], telephony and networking [18, 40, 4], and CPU/network/memory resources in
servers/data centers [39, 41], a number of characteristicspeculiar to power infrastructure present
us with novel concerns.

• Agile protective systems mechanisms.Finally, to enable safe and performance-friendly operation
despite the above techniques for aggressive provisioning of the power hierarchy, we develop agile
systems mechanisms based on dynamic throttling of the CPU DVFS state of our servers. Our
profiling and prediction techniques enable a systematic trade-off between the cost savings offered
by our provisioning technique and the accompanying performance degradation.

We implement our techniques in a prototype data center with astate-of-the-art PDU supplying
power to multiple servers. We modify the Xen VMM to implementour agile protective mechanisms
based on dynamically throttling CPU DVFS-states. Using a variety of well-regarded benchmarks
representative of data center applications, we conduct a detailed empirical evaluation to demonstrate
the feasibility and utility of our provisioning approach.

As a representative result, by accurately identifying the worst-case power needs of hosted work-
loads, our technique is able to improve the number of serversrunning copies of the e-commerce
benchmark TPC-W that can be safely connected to a PDU by 150% compared to the currently preva-
lent practice of using face-plate ratings. Exploiting statistical multiplexing among the power usage
of these servers along with controlled under-provisioning(by 10%) based on tails of power profiles
offered a further gain of 100%. Furthermore, evidence of self-similarity in the power usage of some
workloads suggests that such gains can be expected even higher up in the power hierarchy. Reac-
tive techniques implemented in the Xen VMM running on our servers dynamically modulated CPU
DVFS-states to contain power draw within safe limits despite our aggressive provisioning. Finally,
information yielded by our profiles also provided ways of controlling the performance degradation re-
sulting from our under-provisioning. For the experiment above, the average response time of TPC-W
sessions only grew by 4% from 298 msec to 310 msec; the95th percentile of grew from 1.59 sec to
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1.78 sec, a degradation of only 11.65%.

Road-map. The rest of this paper is structured as follows. We provide background on power con-
sumption in data centers in Section 2. We conduct an empirical study of power consumption in
consolidated settings in Section 3. Based on lessons learnt from this study, we develop techniques for
improved provisioning and usage of power infrastructure inSection 4 and address associated relia-
bility concerns in Section 5. We present our prototype implementation in Section 6 and conduct an
experimental evaluation of our techniques in Section 7. Finally, we discuss related work in Section 8
and conclude in Section 9.

2 Power Provisioning Overview

In this section, we provide necessary background on the power supply infrastructure and the hosting
model assumed in our data center.

Power Supply Hierarchy. In a typical data center, a primary switch board distributespower among
severalUninterrupted Power Supply Sub-stations(UPS; 1,000 KW) that, in turn, supply power to
collections ofPower Distribution Units(PDU; 200 KW.) A PDU is associated with a collection of
server racks (up to 50.) Each rack has several chassis that host the individual servers. Power supply
could be either at the server-level (as in rack-mounted systems) or at the chassis-level (as in blade
servers.) Within all these components, fuses/circuit-breakers1 are used to protect equipment from
surges in the current drawn. We view this collection of powersupply infrastructure as forming a
power supply hierarchywithin the data center, with the primary switch board at the top, the power
supplies within servers (and storage/networking equipment) at the bottom, and UPS units, PDUs, etc.
in between.

Power Budgets. Each fuse or circuit-breaker has a time-current characteristic curve: a point(s, l)
on this curve specifies the maximum power draws that the fuse can safely sustain overl contiguous
time units. For simplicity, we use a single such point(S, L) as thesustained power budgetfor the
corresponding level in the hierarchy. Sustained power budgets are defined over fairly small time
periods—of the order of a few seconds or even milliseconds. Aviolation of this sustained power
budget would mean a draw ofS Watts or more was sustained over a contiguous period ofL time
units. While sustained power is closely related to the notionof peak powerthat is frequently used
in literature [16, 28], the difference must be clearly understood. Peak power, as is typically defined,
merely captures the maximum power consumed within an entity/level without capturing the time-
scale over which this power usage sustains. Hence, it does not capture the limits posed by fuses well.
For example, a device may have a high peak power consumption and still operate safely if this peak
does not sustain long enough to exercise the limits associated with the corresponding fuse.

Virtualized Hosting Model. Our hosting model assumes a large cluster of high-end servers (say
with dual processors and a few GB of memory) interconnected by a high bandwidth network for com-
munication. Each server runs a virtual machine monitor (VMM) allowing multiple applications to be

1A circuit breaker is similar to a fuse in its function except that it could be reused after an episode of excessive current
draw. We will simply use the term fuse for both henceforth.
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consolidated within a single server if their resource needscan be accommodated by the server. In ad-
dition, many of these servers are also connected to a consolidated high capacity storage device/utility
through a Storage Area Network which facilitates data sharing and migration of applications between
servers without explicit movement of data.

3 Power Profiling and Prediction for Aggregates

In this section, we develop techniques to measure and characterize the power consumption of indi-
vidual applications. Borrowing techniques from existing research, we also derive characterizations
of their resource usage. Finally, we develop techniques to predict the power consumption at vari-
ous levels of the spatial hierarchy when these applicationsare consolidated. Taken together, these
measurements and techniques set the background for improvements in provisioning the power infras-
tructure that we explore in the following sections.

3.1 Empirical Derivation of Power and Resource Usage Profiles

Our approach for characterizing the power and resource usage of an application employs an offline
profiling technique. The profiling technique involves running the application on an isolated server. By
isolated, we mean that the server runs only the system services necessary for executing the application
and no other applications are run on the server during the profiling process. Such isolation is necessary
to minimize interference from unrelated tasks when determining the application’s power and resource
usage.2 The application is then subjected to a realistic workload and a combination of hardware and
software monitoring infrastructure is used to track its power and resource usage.

Profiling Power Consumption. We connect a multi-meter to the server used for our offline profiling
and use it to measure the power consumption of the server onceeverytp time units. We find it useful
to convert the resulting time-series of (instantaneous) power consumption samples into a probability
density function (PDF) that we call the application’spower profile. Let w

Ip

A be a random variable
that represents the average power consumption of the applicationA over durations ofIp time units,
whereIp = k · tp, (k is a positive integer.) Note thatwIp

A represents the average consumption over
any consecutive interval of sizeIp. It is estimated by shifting a time window of sizeIp over the
power time-series, and then constructing a PDF from these values. Figure 2 illustrates the process
of converting a power usage time-series into a power profile.Notice that our technique takes each
power sample to be the power consumptionthroughoutthe tp time units preceding it. Clearly, the
inaccuracies due to this assumption grow withtp. Finally, as part of our profiling, we also record the
idle power of the server running the applications (127-141 Wfor our servers.)

Profiling Resource Usage. We use measurement techniques similar to those existing in research [1,
30, 39] to record resource scheduling events of interest. By recording CPU scheduling/de-scheduling

2In practice, a distributed application with multiple components may require multiple servers to meet its resource
needs. We only consider applications whose resource needs can be met by a single server. Our technique extends to appli-
cations requiring multiple servers by simply running the application on the appropriate number of servers and conducting
measurements on each of them.
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Figure 2: Illustration of the derivation of a power profile from a power consumption time-series for
tp = t andIp = I.

instants for the virtual machine running our application, we derive its CPU usage profile, an ON-
OFF time-series of its CPU usage. Similarly, packet transmission/reception times and lengths yield
its network bandwidth usage profile. We also record time-series of memory consumption and disk
I/O requests made by the application. Similar to power measurements, we find it useful to construct
resource usage PDFs from these profiles. Finally, we also record PDFs of application-specific perfor-
mance metrics (e.g., response time, throughput.)

Discussion on Our Profiling Technique. The efficacy of our provisioning depends crucially on the
credibility as well as the feasibility of our offline profiling.

• On the feasibility of collecting profiles: The workload used during profiling should be both re-
alistic and representative of real-world workloads. Thereare a number of ways to ensure this,
implying that offline profiling is not unreasonable to assume. While techniques for generating such
workloads are orthogonal to our current research, we note that a number of different well-regarded
workload-generation techniques exist, ranging from the use of synthetic workload generators to the
use of well-known benchmarks, and from trace replay of actual workloads to running the appli-
cation in a “live” setting. Any such technique suffices for our purpose as long as it realistically
emulates real-world conditions. In fact, (with regard to running an application in a live setting)
many data center applications do start in isolation. Consequently, profiling can be done during
the early stages of application deployment, similar to thatproposed in current research [39, 37].
Furthermore, workload patterns are often repetitive over some time granularity (such as daily cy-
cles [20]), providing opportunities to incorporate increased confidence into gathered profiles by
conducting multiple measurements.

• Dealing with varying resource/power usage: Implicit in the power/resource profiles described
above is an assumption of stationarity of power/resource usage behavior. Executions of realistic
applications are likely to exhibit “phases” across which their power and resource usage behavior
change significantly. An example of this is the change in resource needs (and hence power con-
sumption) of a Web server whose workload exhibits the well-known “time-of-day” variation [20].
Similarly, many scientific applications alternate betweendoing significant amounts of I/O (when
reading in parameters from files or dumping results to them) and computation. Clearly, the utility
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of our power profiles depends on effectively determining such phases. Power and resource profiles
could then be derived separately for every such phase. Enhancing our techniques to deal with these
issues is part of our future work. In this paper, we limit ourselves to a single profile per-application,
except in Section 7.4, where we explore a simple technique todetect a significant change in a power
profile.

• Measurement infrastructure related considerations: Note that due to our ability to only measure
power usage at the granularity of the entire server (as opposed to measuring the power usage of
constituent components such as CPU, disk, etc.), our measurements are only an approximation
(in fact, an upper bound) of the power consumed by the application. By minimizing any other
interfering activities during the offline profiling, we attempt to keep this gap small. A related issue
concerns the parameterstp andIp involved in the definition of the variablewIp

−
. We empirically

study appropriate values for these in our recent research [7]. Finally, we restrict our attention to
profiles with the CPU operating at the highest DVFS state. Results presenting profiles at different
DVFS states may be found in [7].

• On application modeling: We do not concern ourselves with identifying relationships between
application’s performance metrics (such as response time)and resource usage. This is a well-
studied area in itself [36, 3, 10, 14, 38]. We borrow from thisliterature whenever it is easily done.
Generally, we make simplifying assumptions about these dependencies that we expect not to affect
the nature of our findings.

3.2 Profiling Applications: Key Experimental Results

In this section, we profile a diverse set of applications to illustrate the process of deriving an appli-
cation’s power consumption behavior. We also present selected information about resource usage
and performance. These experiments provide us a number of key insights into: (a) the relationship
between an application’s power consumption and its usage ofvarious resources and (b) important
statistical characteristics of the power usage behavior ofthese applications.

Dell PowerEdge SC1450 Features [12]
Processor Two(2) Intel(R) Xeon 64bit 3.4 GHz

Main Memory 2GB
L2 Cache 2MB

Hard Disk(2) WD Caviar 40GB 7200rpm
Hard Disk Power 7W/1W (Active/Standby)
Network Interface Dual embedded Intel Gigabit2 NICs

Power Supply 450Wx1

Table 1: Specifications of the server used to host the applications that we profile.

Signametrics SM2040 Features [31]
Digits of Resolution 6-1/2
Measurement Rates 0.2/sec - 1000/sec

Measurement Range (AC current) 2.5A
Interface PCI

Table 2: Details of the multi-meter used in our profiling.

Our testbed consists of several Dell PowerEdge servers (details appear in Table 1.) We use one
of these servers for running the applications that we profile. We connect a Signametrics SM2040
multi-meter (details appear in Table 2) in series with the power supply of this server. The multi-meter
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sits on the PCI bus of another server which is solely used for logging purposes. This multi-meter is
capable of recording power consumption as frequently as once every millisecond. Unless otherwise
specified, throughout this section, we havetp=Ip=2 msec. In Section 7, we employ a less accurate
measurement facility within a PDU in our prototype data center to be able to simultaneously record
power consumptions of multiple servers connected to it. We run the Xen VMM [2] on our servers
with each application encapsulated within a Xen domain.

The server running the application is connected to the multi-meter while the remaining servers
are used to generate the workload. We report our observations for the representative applications
listed in Table 3. In our environment, the CPU is the largest contributor to power consumption, so
we find it useful to classify these applications based on their CPU usage. Applications in the SPEC
CPU2000 suite areCPU-saturating, in that they are ready to use the CPU at all times. The remain-
ing applications alternate between using the CPU and being blocked (e.g., on I/O, synchronization
activities, etc.) and their CPU utilization depends on the workload they are offered. We profile these
non-CPU-saturatingapplications at different workload intensities. TPC-W is profiled with the num-
ber of simultaneous Web sessions varying from 10 to 100, in increments of 10. For experiments
involving TPC-W, we represent the workload intensity as TPC-W(x) where “x” is the number of si-
multaneous Web sessions. For experiments involving Streaming Media Server, 3Mbps is used as the
streaming rate; Streaming(x) represents a workload of “x” clients. Finally, the workload intensity for
SPECjbb2005 can be controlled using a tunable parameter dictating the number of “warehouses” it
stores. We use a value of 6 for this parameter throughout thispaper.

Applications
TPC-W [33] 3-tiered NYU implementation of the TPC-W

Transactional Web-based E-commerce benchmark
Streaming Media Home-grown UDP streaming server, Streams

MPEG-1 to specified no. of clients & data rate
SPECjbb2005 [35] SPEC’s 3-tiered client-server benchmark

Emulates server-side Java applications
SPEC CPU2000 [34] SPEC CPU2000 suite (Art, Bzip2, Mcf, Mesa)

Table 3: Salient properties of our applications. TPC-W, Streaming Media Server, and Specjbb2005
are non CPU-saturating, whereas applications in the SPEC CPU2000 suite are CPU-saturating.

We now present key results from our profiling study.

Temporal Variations in Power Usage. We find that all our applications exhibit temporal variations
in their power usage to different degrees. Given that CPU consumes significantly more power than
I/O devices in our environment, not surprisingly, power profiles for non CPU-saturating application
(Figures 3 (a)) are found to exhibit higher variance than CPU-saturating application (Figures 3 (b).)
Specifically, in the profiles reported in Figure 3, the variance of the TPC-W and Streaming profiles
were 92 and 84 compared with only 47 and 59 for Bzip2 and Mcf, respectively. The CPU usage of a
non CPU-saturating application exhibits an ON-OFF behavior, corresponding to the application being
in running and blocked states, respectively. When such an application blocks, its power consumption
corresponds to the server’s idle power. This ON-OFF CPU usagecontributes to the higher variance
in its power consumption. Intuitively, we expect that on being consolidated under common power
elements, applications with higher variance in their powerusage would yield larger reductions (over
worst-case provisioning) in required power capacity via statistical multiplexing effects. The exact
extent of these savings would depend on the particular set ofapplications being consolidated together.
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(a) TPC-W, 60 sessions
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(b) Streaming, 100 clients
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(c) Bzip2
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(d) Mcf

Figure 3: Power distributions of TPC-W(60), Streaming(100),Bzip2, and Mcf compared.

Application Power usage percentile (W)
100th 99th 95th 90th Avg.

TPC-W(60) 260.4 236.4 233.2 229.2 185.5
Streaming(100) 242.4 227.4 214.8 208.2 184.1

Bzip2 252.6 242.4 237.2 235.1 224.9

Table 4: Salient aspects of the power profiles of TPC-W, Streaming, and Bzip2 sampled at 2 msec
granularity.

Tails of Power Profiles. The nature of the tail of a resource requirement distribution crucially affects
savings that under-provisioning (that is, provisioning less than what the worst-case needs suggest)
can yield. In Table 4, we present the99th, 95th, and90th percentiles of the power profiles of TPC-
W(60), Streaming(100), and Bzip2 along with their peak and average values. We make two useful
observations. First, for all the applications, the worst-case power needs (in the range 240-260 W)
are significantly less than the power supply provisioned within our server (450 W, recall Table 1.)
Second, the99th and95th percentile needs are lower than the worst case by up to 10%, while the90th

percentile is lower by up to 15%. Together these results suggest that controlled under-provisioning
based on power profile tails can potentially bring about capacity and cost savings.

Self-similarity in Power Usage. A final statistical feature worth investigating in our profiles is the
presence (and extent) of self-similarity [26]. Due to the hierarchical nature of the power infrastructure
(recall Section 2), the presence of self-similarity has interesting implications on capacity provisioning
at higher layers of aggregation (PDU, UPS, etc.) The well-known Hurst parameter (H) is one way
to quantify the self-similarity exhibited by a process. It lies in [0.5, 1.0] with higher values repre-
senting larger degrees of self-similarity. We calculate the Hurst parameter for the power time-series
of our applications. We find the Hurst parameter to be0.86, 0.83, 0.76, and0.52 for TPC-W(60),
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Figure 4: Comparison of measured and sustained power consumption (L=5 sec) of a PDU connected
to 7 Servers (each running TPC-W(60).)

SPECjbb2005, Bzip2 and Streaming(100), respectively. Due tothe hierarchical nature of the power
infrastructure (recall Section 2), the presence of self-similarity has interesting implications on capac-
ity provisioning at higher layers of aggregation (PDU, UPS,etc.) Specifically, applications with (i)
long tails in their power profilesand(ii) high self-similarity in their power time series, are likely to re-
tain these characteristics (i.e., long tails/burstiness)even at higher levels of aggregation. In particular,
since TPC-W(60) has a long tail (refer Table 4) and a high Hurst parameter, we expect the aggregate
power series of multiple TPC-W(60) server instances to also exhibit burstiness. SPECjbb2005, that
exhibits a high Hurst parameter along with low burstiness, presents a contrasting case: we expect
power elements consolidating copies of this application toexperience power usage patterns with low
burstiness. We validate these intuitions in Section 3.3 where we study power usage of such aggregates.

3.3 Prediction Techniques for Aggregates

Crucial to provisioning levels in the hierarchy higher than the server (PDU, UPS, etc.) are ways to
combine the power profiles of applications running on the servers beneath this level to predict their
aggregate power usage. While predicting the average and eventhe peak of such an aggregate is fairly
straightforward, doing the same for sustained power (recall the definition in Section 2) is non-trivial.
We employ our recent research which combines power and resource usage profiles of individual ap-
plications and predicts the behavior of sustained power consumed at various levels (server, PDU, and
higher) when these are consolidated. A representative result is presented in Figure 4 and Table 5.
As shown, for a PDU connected to7 servers, each consolidating TPC-W(60), our technique predicts
within reasonable error margins (1-5%). For a detailed explanation of our prediction technique, please
refer to our Technical Report [7].

As suggested in Section 3.2, we observe that the sustained power consumption of this collection
of servers, each running an instance of the relatively bursty TPC-W(60) application, also exhibits a
longer tail (e.g., compare the100th and90th percentiles reported in Table 5) than those for aggregates
of (i) the less bursty SPECjbb2005 application and (ii) the less self-similar Streaming Server (see [7]
for more details.)
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Power Measured Predicted Error
percentile Sustained power (W) sustained power (W) (%)

80 1143 1181 3.2
90 1171 1201 2.4
99 1236 1250 1.1
100 1269 1300 2.4

Table 5: Efficacy of our sustained power prediction on a PDU consolidating 7 Servers each running
TPC-W(60). We compare the tail of the measured power with our predicted power.

4 Improved Provisioning of Power

In this section, we propose techniques that utilize the profiling and prediction techniques developed
in Section 3 to better provision the power hierarchy in a datacenter. While doing this, the data center
must strike a balance between the cost savings and the performance degradation likely to result due
to the protective mechanisms that enable safe operation during episodes of power draw in excess of
provisioned capacity.

4.1 Under-provisioning Based on Power Profile Tail

Sections 3.2 and 3.3 reinforce recent results suggesting that provisioning based on the face-plate rat-
ings of servers severely under-utilizes the power infrastructure [24, 15]. In fact, these results suggest
that a data center can even go a step further—given the extentof burstiness present in the power usage
of many commonly hosted applications, we can realize further improvements by provisioning less
conservatively than for the worse-case. This has two complementary implications at each level of the
power hierarchy: (i) its power supply can be replaced with one with lower capacity (and cost) and/or
(ii) it can supply power to a larger overall set of devices connected in the levels beneath it. (Although
we will focus on (ii), the gains in (i) are easily understood as well.)

For ease of exposition, let us assume that all sustained power budgets in the following discussion
are defined over a unit time period - the second element of the sustained power budget pair will
therefore be omitted. It is easy to generalize this discussion to budgets defined over arbitrary time
periods. Let us denote byB the sustained power budget associated with a power supply elementE.
Let n elements drawing power fromE be denotede1, . . . , en, and their (predicted) sustained power
profiles be denotedu1, . . . , un. 3 Finally, letup denote thepth percentile of the distributionu. Under-
provisioning the capacity at elementE implies ensuring the following condition:

n∑

i=1

u100−pi

i ≤ B; ∀i : pi > 0. (1)

This should be compared with provisioning the power capacity of this element for the worst-case
needs:

n∑

i=1

u100
i ≤ B. (2)

The degree of under-provisioningpi for elementei should be chosen based on a desirable trade-off be-
tween the cost savings accrued from under-provisioning andthe performance degradation that occurs.

3This notation is general enough to capture under-provisioning at any level. For example, ifE denotes a server (with
its power supply being the candidate for under-provisioning), the elementsei are applications consolidated on it. The
specific level for which we evaluate our techniques considers a PDU as the elementE supplying power to servers denoted
by ei.
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Figure 5: Illustration of our techniques based on under-provisioning and statistical multiplexing/over-
booking as applied to a PDU supplying power to a collection ofservers.

The gain offered by the provisioning as represented by formula (1) over worst-case provisioning is∑n
i=1(u

100
i − u100−pi

i ). Clearly, applications with more bursty power profiles wouldyield higher gains
at the PDU level. Furthermore, as argued in Section 3.2, elements consolidating bursty workloads
underneath them are also likely to experience bursty power usage, implying gains even at these higher
levels.

4.2 Exploiting Statistical Multiplexing

If the elements consolidated at a given level exhibit power usage patterns that complement each other
temporally, then statistical multiplexing gains become worth exploiting. In simple terms,provisioning
for the tail of aggregates can be more gainful than provisioning for the sum of individual tails(as was
done in the under-provisioning technique above.) In Section 3.2, we saw evidence of appreciable
temporal variations for a subset of our applications. Adding to the terminology introduced above the
symbolU for the sustained power profile at elementE, we can enhance our provisioning technique
as follows:

U100−p ≤ B; p > 0. (3)

Rather than under-provisioning the “share” of each elementei independently as in (1), this tech-
nique does so for theaggregated needsof all these elements. A key point to note here is that under-
provisioning and statistical multiplexing arenot mutually exclusive but complementary—the aggrega-
tion U representing multiplexing of underlying power usages is being under-provisioned. The degree
of under-provisioningp should be chosen based on the following considerations. First, it should be
possible to distribute it into individual degrees of under-provisioning (pi for elementei) that pro-
vide desirable trade-offs between cost savings and performance. Second, (as mentioned in the last
technique) mechanisms should be present at (and below) the level of elementsei in the hierarchy to
enforce the power limits corresponding to these degrees of under-provisioning. We will address these
issues in Section 5.
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4.3 Controlled Over-booking of Power

A final enhancement to our provisioning technique incorporatesover-bookingof power capacity at
E. Intuitively, if the power needs of the aggregate consolidated below elementE are substantially
lower than the capacity, then a small degree of over-bookingcan further improve the gains offered by
statistical multiplexing. We incorporate an over-bookingfactorO as follows to achieve this:

U100−p ≤ B · (1 + O); p,O > 0. (4)

Figure 5 summarizes all of these techniques for a PDU supplying power to a group of servers.

5 Reliability and Performance Concerns

We consider, in turn, concerns of reliability and performance that must be addressed to gainfully
utilize the provisioning techniques developed so far.

5.1 Enforcement of Power Budgets

Our techniques result in (or increase) the likelihood of episodes where the power needs at one or
more levels within the hierarchy exceed its capacity. The over-provisioning based practices prevalent
currently render such events practically impossible. Unless remedial actions are taken during such
an occurrence, extremely undesirable outcomes (e.g., a subset of the hardware becoming unavailable,
thermal exigencies that could affect the reliability of hardware, among others) could result. Realizing
any meaningful usage/cost gains for the power infrastructure may require setting the provisioning pa-
rameters (e.g.,p andO introduced in the previous section) throughout the hierarchy high enough to
make the likelihood of budget violations non-negligible. Furthermore, unpredictable/hard-to-predict
workload changes (such as an overload experienced by an e-commerce site [22]) may also render
budget violations more likely than predicted by profiling based on prior workload patterns. These
concerns necessitate mechanisms within a data center that cancompletely avert such episodes.For-
tunately, as demonstrated by several recent research efforts, such mechanisms are realizable (more
details in Section 8.)

We rely on the ability of the consumers of power (e.g., servers in our work) to operate at mul-
tiple “power states” (e.g., CPU DVFS state) that allow trade-offs between power consumption and
resource capacity. We employ reactive techniques based on watermarks within our power hierarchy
that utilize dynamic transitions to lower power states to avert power budget violations. Conceptually,
when the watermark for an element in the hierarchy is exceeded, the data center triggers throttling of
the appropriate subset of its hardware. A watermark for an element with a sustained power budget
(s, l) is a 2-tuple(sw ≤ s, lw ≤ l) and has the following operational meaning: Upon observing a
sustained power draw at a rate ofsw units or more forlw time units, an element should initiate the
throttling of the consumers under it in the hierarchy. As we will discuss in Sections 7.2 and 8,lw
chosen to allow enough reaction time for the throttling to kick in, can provide the desired reliable
operation. The choice of a watermark has to strike the following balance: Higher values oflw reduce
the number of invocations of throttling while resulting in poorer application performance upon these
invocations. We can borrow from the findings of existing research, particularly [44], on this front.
In our implementation and evaluation, we use a simple, statically-chosen watermark (see Sections 6
and 7.2.)
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Application Power usage percentile (W)
100th 90th Avg.

TPC-W(60) 209 199 164.3
TPC-W(20) 183 152 150

Streaming(100) 183 159 152.1
Specjbb2005 219 219 217.0

Table 6: Salient aspects of the power profiles of TPC-W, Streaming Server, and Specjbb2005 col-
lected by running these applications on servers connected to our PDU. Power is sampled at 1 second
granularity.

5.2 Performance Concerns

Like any system employing under-provisioning and/or statistical multiplexing of a resource among
competing consumers, our data center must contend with the accompanying degradation in resource
availability and the resulting performance deteriorationexperienced by hosted applications. The pro-
visioning parameters (p andO for each level within the power hierarchy) and the nature/efficacy of our
throttling protective mechanisms determine how the performance of hosted applications is affected.

As in Section 5.1, our data center can gainfully borrow ideasfrom several bodies of research
on understanding the relationship between application performance and different degrees of resource
availability (application modeling), including work by the authors [6, 38, 39]. Information regarding
the following aspects of application behavior captured by our profiling technique could be utilized
by such models to achieve desired trade-offs between the cost gains and performance degradation:
(i) resource capacity and performance offered to applications at different power states and (ii) power
profiles with the equipment operating at different power states. While we restrict ourselves to a simple
DVFS modulation scheme (described in evaluated in Section 7.2) in this paper, we have developed
more sophisticated schemes for power/performance trade-off and control in related research [5].

6 Implementation Considerations

Infrastructure. Our experimental testbed consist of a 20 Amps PDU from RaritanInc. [29] that
can supply power to up to 20 servers. The PDU provides a software interface to read the power con-
sumption of each server connected to it as well as the power consumption of the entire PDU. The
granularity of the power measurement is 1 second and accuracy is 0.1 Amp. For our experiments,
we vary the number of servers connected to the PDU. Note that the measurement capability offered
by the PDU is lower fidelity than the multimeter used in Section 3 (every msec with accuracy within
10−6 Amp.) We repeat the profiling experiments described in Section 3 using the PDU and report
important power consumption characteristics in Table 6. A dedicated set of servers (other than the
ones that were connected to the PDU) were used for generatingthe workloads. Each server hosting an
application runs the Xen VMM 3.1.0 (modified as described below) with each applications encapsu-
lated within a separate domain. While our techniques apply toscenarios where multiple applications
are consolidated on a single server (see [7] for our related efforts exploring profiling and prediction in
such settings), we restrict ourselves to hosting one application per server. To enable live migration [8]
of these VMs across servers, we place all the VM disk images ina NFS partition that is exported to
all the servers connected to the PDU.

Our servers have a rich set of power states including 4 DVFS and 8 Clock Modulation states (refer
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Table 1.) We switch off the default Linux daemon within Xen’sadministrativeDomain0that dynam-
ically varies the power state based on processor utilization. We write custom drivers for changing the
power state of our servers. We use the IA32PERFCTL and IA32CLOCK MODULATION MSR
registers to change the DVFS and clock modulation states, respectively. Since the vanilla Xen VMM
traps and nullifies all writes to MSR registers (wrmsr operations), we modify it to enable writes to
these registers.

Watermark-based Budget Enforcement. We briefly discuss the implementation of our technique
based on a watermark(sw, lw) for enforcing a sustained power budget(s, l). We dedicate a server
other than those hosting the applications or generating workloads to initiate reactive throttling and
call it thewatermark-based enforcer.The watermark-based enforcer periodically (once every 1 sec)
monitors the power consumption of the PDU and inspects all the power samples collected over the last
lw time units. If all these values exceedsw, it sends throttling commands to all the servers connected
to the PDU using RPCs that specify their new power states. In Section 7, we will discuss in detail
how the watermark-based enforcer selects appropriate throttling states for the servers.

7 Experimental Evaluation

7.1 Improvements in consolidation

In this section, we compare prevalent provisioning techniques used in data centers with the techniques
developed in Section 4. We restrict our investigation to capacity/cost improvements in the number of
servers that can be connected to a PDU and safely operated; similar improvements are worth exploring
at other levels in the power hierarchy. For all our experiments we assume the sustained power budget
for the PDU to be (1200W, 5 sec). We compare the following provisioning techniques.

Face-plate Provisioning (FP ). Face-plate value is the capacity rating of a server specifiedfor its
power supply. For our servers the face-plate value is 450W. UsingFP , we can connect 2 servers to
our PDU.

Vendor Calculator-based Provisioning (V P ). Server vendors (including IBM, HP, Sun, and Dell),
in an attempt to help data centers administrators, provide calculators for estimating the peak power
needs of their servers. Such a calculator takes as input the configuration of a server (number and type
of processors, memory cards, etc.) and expected workload intensity (rough descriptions of CPU, I/O
intensity, etc.) and outputs its power needs. The calculator provided by the vendor of our server [13]
(for average load specification) estimates its power requirement to be 385W. Therefore using this
provisioning technique, we would connect 3 servers to our PDU.

Profiling-guided Provisioning (UP and SP ). The last two prevalent provisioning techniques are
based solely on worst-case estimates of server power needs.In contrast, the techniques developed
in Section 4 incorporate application-specific power needs.Let us denote byUP (pi) our under-
provisioning based technique (recall (1)) and bySP (p) the statistical multiplexing based technique
(recall (3).)
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Technique Servers running instances of TPC-W(60)
No. Servers % Improvement

UP (100) 5 66
SP (100) 6 100
UP (90) 6 100
SP (90) 7 133

Table 7: The number of servers (each running an instance of TPC-W(60)) connected to a 1200W PDU
by different provisioning techniques. Percentage improvements reported are overV P .

Technique Servers running instances of SPECjbb2005
No. Servers % Improvement

UP (100) 5 66
SP (100) 5 66
UP (90) 5 66
SP (90) 5 66

Table 8: The number of servers (each running an instance of SPECjbb2005) connected to a 1200W
PDU by different provisioning techniques. Percentage improvements reported are overV P .

In theory,UP (100) andSP (100) should coincide. However, due to extremely small probabilities
(smaller than10−7) being rounded off to 0 in our implementation of sustained power prediction, we
observe a difference between these quantities. In fact, these differences add up to slightly more than
150W at a PDU connected to 7 servers, each running an instanceof TPC-W(60).

Tables 7-9 present improvements yielded byUP andSP in the number of servers hosting a di-
verse mix of applications that can be connected to our PDU with either: (i) no under-provisioning
or (ii) under-provisioning of 10%. (Improvements resulting from the over-booking parameterO (re-
call 4) would be qualitatively similar, and we do not investigate them here.) Whereas the worst-case
sustained power consumption of SPECjbb2005 and TPC-W are close to each other (220W and 210W
respectively as shown in Table 6), due to the longer tail in its profile, higher gains result in an environ-
ment with servers hosting TPC-W like workloads. In fact, for an environment with SPECjbb2005-like
applications, while provisioning based onUP (100) (i.e., worst-case needs) provides 66% improve-
ment over Vendor Calculator-based provisioning and 150% improvement over face-plate based pro-
visioning, no further improvements result from under-provisioning. we are able to achieve higher
consolidation for servers running TPC-W(60) as illustrated in Table 7 whereas no improvement could
be seen for servers running SPECjbb2005 as shown in Table 8. Table 9 illustrate the efficacy of
our provisioning technique for a set of servers running different kinds of applications. Gains offered
by our provisioning techniques are thus closely dependent on the power usage characteristics of the
hosted workloads.

Finally, we explore a variety of application mixes that lie between the previous two extremes. We
present a subset of these in Table 9 and find gains ranging from33% to 133% overV P .

7.2 Sustained Budget Enforcement

We evaluate the efficacy of our watermark-based budget enforcement technique developed in Sec-
tions 5.1 and 6. For our PDU’s sustained power budget of (1200W, 5 sec), we choose (1200W, 3 sec)
as the watermark.

We evaluate the efficacy of budget enforcement for an increasing number of servers—starting at 6
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Technique No. servers hosting each type of app.% Improvement

UP (100) 3 x TPC-W, 1 x SPECjbb, 1 x SM 66%
SP (100) 3 x TPC-W, 1 x SPECjbb, 2 x SM 100%
UP (90) 3 x TPC-W, 1 x SPECJBB, 2 x SM 100%
SP (90) 3 x TPC-W, 1 x SPECJBB, 3 x SM 133%
UP (100) 2 x TPC-W, 2 x SPECjbb 33%
SP (100) 2 x TPC-W + 2 x SPECjbb, 2 x SM 100%
UP (90) 2 x TPC-W, 2 x SPECjbb, 2 x SM 100%
SP (80) 2 x TPC-W, 2 x SPECjbb, 3 x SM 133%

Table 9: The number of servers connected to a 1200W PDU by different provisioning techniques.
Percentage improvements reported are overV P . Each server runs an instance of one of the fol-
lowing: TPC-W(60), SPECjbb2005, and Streaming(100), shortened to TPC-W, SPECjbb, and SM,
respectively.

Power state Predicted Peak of Sustained Power
(DVFS, Clk. Mod.) 6 servers 7 servers 8 servers 9 servers
(3.2Ghz, 100%) 1191.0 W 1300.0 W 1481.0 W 1672.0 W
(2.8Ghz, 100%) 967.6 W 1138.6 W 1308.2 W 1478.2 W
(2.8Ghz, 50%) 861.7 W 1011.7 W 1162.7 W 1313.6 W

Table 10: Power consumption of a server running TPC-W(60) whenoperating at three different power
states. Bold power values indicate that the corresponding power state is chosen for throttling by the
watermark-based enforcer.Legend:Clk. Mod.= Clock Modulation state.

and going up to 9—connected to a PDU. Each server runs an instance of TPC-W(60). The watermark-
based enforcer described in Section 6 sends throttling commands to the servers upon observing three
consecutive power readings above 1200W at the PDU (recall that the sampling interval is 1 sec.) Upon
observing such an episode, the watermark enforcer must choose suitable power states for throttling the
servers so that the sustained budget remains un-violated. This is achieved using a combination of our
sustained power prediction technique and information gathered during offline profiling. In Table 10,
we record the peak of the sustained power consumption at the PDU for varying number of servers
connected to it and made to operate at different power states. For each of these server aggregates,
we choose the highest power state, for which the peak of sustained power consumption is less than
the PDU’s budget. This chosen power state (highlighted in Table 10 for server aggregates of different
sizes) is therefore guaranteed to bring the system within the capacity limits. As we can see from
the table, there is no such power state if 9 servers, each running TPC-W(60), were connected to our
PDU. That is, even if we operate at the lowest possible power state,4 our technique can not prevent
violations of the PDU budget. Throttling is done for a periodof 2 seconds (which is the difference
between the time constants of the watermark and the sustained power budget) after which the servers

4Actually, (2.8GHz, 50% Clk.) is not the lowest power state inour server. There are 3 lower power states, but a
server hosting the TPC-W workload crashes if transitioned to any of these lower power states. These states are, therefore,
considered infeasible for the TPC-W workload.

Power States
(DVFS (GHz), Clk. Mod. (%)) (3.2, 100) (2.8, 100) (2.8, 50)

Normalized performance 1 1.18 15.69

Table 11: Performance degradation of TPC-W(60) at three different power states expressed as the
ratio of average session response time with that offered by the servers operating at the highest power
state (obtained from our offline profiling.)Legend:Perf.=Performance.
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Figure 6: Sustained power profile (L=5 sec) for a 1200W PDU connected to 7 servers, each running
TPC-W(60), with and without watermark-based enforcement.

revert back to their original power states.

7.3 Performance Degradation

Next, we study any performance degradation resulting from the throttling necessitated by our aggres-
sive provisioning. Using our prediction algorithm, we estimate the probability of the aggregate power
consumption at the PDU exceeding its watermark. This probability, reported in Table 12, provides an
estimate of the amount of time an application would find its server running at a throttled power state.
We use our offline profiling technique (See Table 11) to estimate the performance degradation caused
by different power states. We compare the predicted performance degradation with the measured val-
ues in Table 12. Since our watermark is (1200W, 3 sec), even ifthe application needs to consume
1200W or more all the time, it will be throttled only 60% of thetime (3 seconds at the highest power
state, 2 seconds at a throttled state). Therefore predictedwatermark violation in Table 12 is computed
by using the probability of violating the watermark (from predicted CDF) and then multiplying that
probability by 0.6.

No. of Watermark Violation Perf. Degradation Feasible?
Servers Meas. (%) Pred.(%) Meas. Pred.

6 0 0 1 1 YES
7 2 7.2 1.04 1.08 YES
8 61.2 59.7 5.2 9.3 YES
9 N/A N/A N/A N/A NO

Table 12: Predicted and measured watermark violations at the PDU and normalized performance
degradation for the instances of TPC-W(60), each running on one of the servers connected to the
PDU. Performance degradation is expressed as the ratio of the average session response time with
that offered by the server operating at its highest power state. The column labeledFeasible?indicates
whether we would be able to prevent the sustained budget for the PDU from being violated.Legend:
Meas.=Measured, Pred.=Predicted, and Perf.=Performance, N/A=Not Applicable.

In Table 12, our technique indicates that 7 is the most numberof servers that could be safely con-
nected to our PDU and still be operated to offer only a small performance degradation to overlying
TPC-W applications. The predicted degradation was 1.88 while the measured degradation upon ac-
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Figure 7: Power consumption recorded at the PDU connected to7 servers, each running an instance
of TPC-W(60), with and without the watermark-based budget enforcement.

tually connecting 7 servers running TPC-W(60) was only 1.04. We also estimate that while 8 servers
can be safely connected and operated, such a configuration would result in significantly degraded
performance (the measured normalized degradation, although much smaller than predicted, is still a
significant 5.2.)

We take a closer look at application performance for the configuration connected 7 servers to
the PDU that emerged as the most preferred in the discussion above. Figure 6 compares the sus-
tained power consumption of a 1200W PDU consolidating 7 servers each running TPC-W(60), with
and without throttling. Also shown is the predicted sustained power profile for this PDU. Figure 7
compares the power consumption of the PDU with and without the watermark-based throttling. We
observe that our watermark enforcer is able to completely prevent sustained power violations by suc-
cessfully identifying occasions at which the servers should be throttled.

7.4 Dynamic Changes in Workloads

We are interested in two aspects of dynamic variations exhibited either consume higher power than
indicated by its power profile, which will result in more frequent violations of watermarks associated
with power supply elements, raising the extent of degradation in performance (due to throttling.)
Second, a workload may consume substantially lower power than its profile rendering provisioning
more conservative. We evaluate the following simple mechanism to detect such changes and adjust
the provisioning parameters accordingly.

We keep track of the recent power profile of the PDU and periodically compare it with its predicted
profile. If there is a statistically significant difference between these distributions, (as reported by a
well-regarded test such as the Kolmogorov-Smirnov Test [11]), we assume the workload has changed
enough to necessitate re-provisioning. Note that upon detecting a phase change at the PDU level, we
may want to percolate similar detection technique down the hierarchy to single out the application
whose phase has changed. This can be achieved since we have the predicted profile of every server
consolidated in the power hierarchy.

We evaluate a simple scenario to demonstrate the working of this mechanism. We consider a set
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Figure 8: Illustration of the measured sustained power distributions ofPDU1 before and after the
phase change. Workload change is detected by comparing the two distributions.

Figure 9: Illustration of phase change and consequent re-provisioning to prevent sustained power
budget violation.

of six servers. Three of these servers run an instance of SPECjbb2005 each, two servers run TPC-
W(20), and the sixth server runs TPC-W(60). We assume that we areprovided with 2 PDUs (PDU1

andPDU2), each with a budget (600W, 5 sec). Based on ourSP (100) provisioning, we connect two
SPECjbb2005 servers and a TPC-W(20) server toPDU1. The remaining servers (hosting one out of
SPECjbb2005, TPC-W(20), and TPC-W(60)) are connected toPDU2. We assume that the workload
of the TPC-W(20) connected toPDU1 increases in intensity to TPC-W(60), simulating an overload
where 40 new clients open sessions. The measured sustained power consumption ofPDU1, before
and after this workload change, is presented in Figure 8. This triggers re-provisioning to accommodate
the increased workload (the exact mechanisms of such re-provisioning are orthogonal to this work),
that suggests the configuration change shown in Figure 9, where this instance of TPC-W(60) under
PDU1 is swapped with the TPC-W(20) underPDU2 to prevent degraded performance for these new
sessions via throttling.

We determine the overheads and effects of migration involved in the re-configuration described
above. We use Xen’s live migration facility [8] to migrate the TPC-W servers between the PDUs and
find that it approximately takes32 seconds to migrate the virtual machines. This causes a factor of
1.37 and2.02 response time degradation for the workloads TPC-W(60) and TPC-W(20), respectively,
during the transition.
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8 Related Work

Research on Provisioning of Power Infrastructure. Server-level:Server vendors (including IBM,
HP, Sun, and Dell [13]), in an attempt to help data centers administrators do better provisioning,
provide calculators for estimating the peak power needs of their servers. Such calculators provide
worst-case power estimates for a server given its componentconfiguration and workload character-
istics. Lefurgy et al. [24] observe that the power supplies of servers are typically over-provisioned
and report that replacing these with cheaper power supplieswith 15% lower capacities results in neg-
ligible degradation in performance. To prevent rare power spikes from exceeding the capacity, they
implement a reactive technique similar to ours that keeps the server power within safe limits. Felter et
al. [16] observe that different components of a server (CPU, memory, etc.) do not require their peak
power simultaneously. That is, the statistical multiplexing effects explored in our paper extend even
to the granularity of disparate resources within a server. They devise a technique that dynamically
proportions the total system power among the system components thereby reducing the power and
cooling requirements of a server.
Cluster-level:Ensemble-level power management [28] by Ranganathan et al. looks at provisioning
the cooling capacity as opposed to our work that looks at provisioning power capacity expended
towards operating servers. The authors observe that for real workloads, the possibility of their power
consumption happening simultaneously is small and use it tobetter provision the cooling capacity at
a blade enclosure level. Their results showed that they are able to realize a reduction of 20% system
power budget with negligible performance impact. Very closely related work of our research is recent
work by Fan et al. [15] which also looks at provisioning the power infrastructure for large data centers
at different levels of the power hierarchy. They analyze data from a real large-scale Google data center
and observe that 40% additional servers can be accommodatedwithin the power supply of their data
center. While these observations motivate our research, we take them one step further and devise a
methodical approach to characterize and statistically understand applications’ power usage and then
use it for provisioning the power infrastructure.

While the basic idea of the above techniques (both at the server level as well ais similar to our
contention (exploiting the gap between provisioned capacity and actual peak power needs of appli-
cations), in the best While our research shares several basicideas with the above body of work, to
the best of our knowledge, we are the first ones to: (i) employ the notion of sustained power budgets
at PDUs and beyond to capture the safety concerns for their fuses/circuit breakers, (ii) characterize
sustained power needs of individual applications and use them to estimate sustained power behavior
of aggregates, and (iii) use devise provisioning techniques that can employ these estimates to strike
the desired balance between cost gains and performance losswhile guaranteeing safe operation.

Control Techniques for Power/Performance Trade-offs. CPU throttling has widely been adopted
for enforcing peak power budgets related to: (a) thermal constraints/cooling capacity of a server [27]
and (b) provisioning power capacity of a server [24, 15]. Recent work by Wang et al. [42] develops
a control-theoretic model that enforces a specified power budget at a cluster level and dynamically
distributes the power budget among the connected servers based on their needs. New IBM servers [21]
are shipped with capability to enforce a specified power budget at very fine time granularity (in order
of msec) by using cpu throttling. Nathuji et al. [25] extend power management solutions for the virtual
machines running on virtualized hardware. Raghavendra et al. [27] look at co-ordinating the different
power budgets (peak and average power budget) enforced at different granularities. Lot of research
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has gone into evaluating the energy/performance trade-offs of applications which involves keeping
either energy or performance as a constant and optimizing for the other metric [43, 5]. The above
techniques for implementing some form of power budgets are complementary to our work.

Yield Management in Other Areas. Yield management (YM) was first explored in the airline
industry, particularly by American Airlines [32]. YM-inspired practices have subsequently been
also explored in areas such as telephony and networking [18,40, 4], memory management [41],
and CPU/network management [39] for servers. While the general principles of under-provisioning,
statistical multiplexing, and overbooking are well-explored in these diverse contexts, their applica-
tion to power infrastructure presents some unique challenges. Such techniques must be necessarily
accompanied by effective protective mechanisms such as those developed in Section 5.1 since the
consequences of violation are disastrous. Also, the hierarchical nature of the power infrastructure
implies that the interactions between decisions taken at various levels must be taken into account.
While we restricted our efforts to investigating the impact of under-provisioning at a single level (a
PDU supplying power to multiple servers), developing acomprehensive understanding of provision-
ing parameters for the entire power hierarchyis a direction for future research.

9 Concluding Remarks

The central thesis of this research was that by carefully understanding the power needs of hosted
workloads and their aggregates, a data center could significantly improve the cost-revenue trade-off
associated with its power supply hierarchy—ranging from server-level power supplies to higher-level
Power Distribution Units (PDUs) and Uninterrupted Power Supply sub-stations. Towards this end, we
developed a measurement technique to derive power profiles of applications. Our profiles succinctly
captured key statistical properties of the power usage of applications and lent themselves to the de-
sign of power usage predictors for aggregates of these applications. We designed a novel technique
guided by these power profiles that employed controlled under-provisioning, statistical multiplexing,
and overbooking when provisioning the power infrastructure. Our evaluation on a prototype data
center using well-regarded benchmarks demonstrated the feasibility and benefits of our technique.
As a representative result, by accurately identifying the worst-case needs of hosted workloads, our
technique was able to improve the number of servers that could be safely connected to a PDU by
150% compared to the currently prevalent practice of using face-plate ratings. Exploiting statistical
multiplexing among the power usage of these servers along with controlled under-provisioning based
on tails of power profiles offered a further gain of 100% over face-plate provisioning. Furthermore,
evidence of self-similarity in the power usage of some workloads suggests that such gains can be
expected even higher up in the power hierarchy. Reactive techniques implemented in the Xen VMM
running on our servers dynamically modulated CPU DVFS-states to contain power draw within safe
limits despite our aggressive provisioning. Finally, information yielded by our profiles also provided
ways of controlling the performance degradation resultingfrom our under-provisioning: e.g., the95th

percentile of response time of TPC-W sessions grew from 1.59 sec to 1.78 sec, a degradation of only
11.65%.
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10 Availability

A detailed technical report describing the sustained powerprediction technique employed in this
research [7], a Xen patch for enabling MSR writes and implementing our watermark-based budget en-
forcement mechanism, and all experimental data are available at:http://csl.cse.psu.edu/hotmap .
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