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Abstract

Emerging energy-aware initiatives (such as billing of ppusage based ate-couplingoetween elec-
tricity sales and utility profits/fixed-cost recovery) rendurrent capacity planning practices based on
heavy over-provisioning of power infrastructuraprofitable for data centers. We explore a combina-
tion of statistical multiplexing techniques (includingntrolled under-provisioning and overbookjng
to improve the utilization of the power hierarchy in a datatee Our techniques are built upon a
measurement-driven profiling and prediction techniquéentracterize key statistical properties of the
power needs of hosted workloads and their aggregates. Asesantative result from our evaluation
on a prototype data center, by accurately identifying thestvoase needs of hosted workloads, our
technique is able to safely operate 2.5 times as many setwmansg copies of the e-commerce bench-
mark TPC-W as allowed by the prevalent practice of using faate ratings. Exploiting statistical
multiplexing among the power usage of these servers alotig aeintrolled under-provisioning by
10% based on tails of power profiles offers a further gain @a®ver face-plate provisioning. Re-
active technigues implemented in the Xen VMM running on arvers dynamically modulate CPU
DVFS-states to ensure power draw below safe limits despieessive provisioning. Finally, infor-
mation captured in our profiles also provides ways of colti@hpplication performance degradation
despite the above under-provisioning: %" percentile of TPC-W session response time only grew
from 1.59 sec to 1.78 sec.

1 Introduction and Motivation

To accommodate modern resource-intensive high-perfacenapplications, large-scale data centers
have grown at a rapid pace in a variety of domains ranging fieseaarch labs and academic groups to
industry. The fast-growing power consumption of thesefptats is a major concern due to its impli-
cations on the cost and efficiency of these platforms as weh@well-being of our environment. By
2005, the energy required to power and cool data center mguipaccounted for about 1.2% of total



U.S. electricity consumption according to a report reldasethe Lawrence Berkeley National Lab-
oratory and sponsored by chip manufacturer AMD. Gartner|Thresearch and advisory company,
estimates that by 2010, about half of the Forbes Global 20@panies will spend more on energy
than on hardware such as servers [17]. Furthermore, Gastienates that the manufacture, use, and
disposal of IT equipment, a large share of which results fdata centers, accounts for 2% of global
C'O, emissions which is equivalent to the aviation industry.

The rapid rise in the number of data centers and the growsegditheir hardware-base (especially
the number of servers) are the primary causes of their istrggpower needs. As an example, a New
York Times article in June 2006 reported that Google had @pprately 8,000 servers catering to
about 70 Million Web pages in 2001, with the number growind.®®,000 by 2003. Their estimate
put the total number of Google servers (spread over 25 datters® to be around 450,000 at the
time. Similarly, Microsoft’s Internet services were beingused in around 200,000 servers with the
number expected to hit 800,000 by 2011. While the power copiom per-unit of hardware has
contributed a much smaller percentage to this growth, nairtg miniaturization at multiple levels
(ranging from chips, servers, racks, to room) within theadanter has necessitated the procurement
of higher capacity cooling systems to deal with the growing/gr densities.

These trends have severe implications on the total cost efatipn (TCO)—deployment-time
costs as well as a variety of recurring costs—of a data cefitke impact on TCO due to higher
bills paid to the electricity provider are easy to apprexiaft a rating of around 250 Watts for a
server (which is on the lower end of peak power for a dual CPitegyswith 1-2 GB memory, a disk,
and a network card), a data center with 20K-40K servers coaslbetween 5-10 Megawatts just
towards powering these servers (discounting cooling systests.) Assuming a cost of 10c/KWH,
this amounts to $4.38M-$8.76M annually expended towardpikeg these servers constantly powered
for a single such data centdfigher power consumption, however, also hurts the TCO in oées |
obvious ways.

Existing practices for capacity planning of the power isfracture within data centers employ sig-
nificant degrees of over-provisioning at multiple levelshaf spatial hierarchy, ranging from the power
supplies within servers [24], Power Distribution Units (@) supplying power to servers, storage
equipment, etc., to even higher-level Uninterrupted Pdwgaply (UPS) sub-stations [15]. This over-
provisioning is done to ensure uninterrupted and reliapkration even during episodes of excessive
power draw as well as to accommodate future upgrades/adslitd the computational/storage/networking
equipment pool in the data center.

Such over-provisioning can prove unprofitable to the datderan two primary ways. The first
and more significant reason emerges from ongoing effortsdmete energy-efficient operation and
discourage wasteful over-provisioning of power supplynoael billing mechanisms. Currently, elec-
tricity providers make more money by selling more eledlyieind they make less money by helping
their customers use less energy. Consequently, this digimeempairs their willingness and ability
to promote energy efficiency, despite its benefits to conssinbdls, electrical reliability, national
security and the environment. This realization has led tppsals to remove the disincentives via
“de-coupling,” which means implementing a regulatory qadécy that breaks the link between elec-
tricity sales, on the one hand, and utility profits and fixedtaecovery, on the other [19]. According
to a USNews article in May 2008, while California pioneereecdepling as early as the 1970s, Con-
necticut, ldaho, New York, and Vermont had also chosen dglony by 2007, and a dozen other
states now are considering it [23]. Consequently, in the heare, a data center operating signifi-
cantly below its provisioned power capacity can expect tp lggher recurring electricity costs. A
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Figure 1: lllustration of the evolution of power capacitydatlemand in a hypothetical data center.
Also shown is the evolution of provisioned capacity based qmevalent practice such as using the
face-plate ratings of devices.

second, perhaps comparatively minor, concern arises dbe &xcess costs expended towards procur-
ing power infrastructure with higher capacity (includinggeger number of power supply elements)
than needed.

Decisions related to the provisioning of power infrastanetmust be made not only at installation
time but on a recurring basis to cope with upgrades. Figutkidirates the evolution of the power
demand and capacity in a data center. As shown, there arenweaml“rooms” between power demand
and capacity. The first head-roofy is intended to ensure the data center can accommodate fore-
seeable additions/upgrades (as shown by the curve labe&ak'Power Consumption (Faceplate)” in
Figure 1) to its hardware base. The second head-rHgnour focus in this research, results due to
current capacity planning practices that significantlyreestimate the power needs of the data center.
A number of recent studies on power usage in data centerglgrevidence of such over-provisioning
at various power elements [15, 16, 24]. Building upon thesgris, we plan to carefully understand
the power usage of data center workloads in order to devewp\asioning technique that addresses
the headroont,.

While provisioning closer to demand reduces both instalfdtipgrade as well as recurring costs,
it does so at the risk of increased episodes of degradedrpefee/availability. This degradation can
occur due to one or more of the following: (i) a subset of thellhare may simply not get powered
up due to insufficient power supply (as happened with anrdisisioned $2.3 Million Dell cluster
at the University at Buffalo, where two-thirds of machinesildonot be powered on till a $20,000
electrical system upgrade was undertaken [9]), (ii) one orenfuses give way during an episode of
surge in power drawn disrupting the operation of applicetibosted on associated servers, and (iii)
the thermal system, faced with constrained power supp@igers shut/slow down of some devices.
Any improvements in power provisioning must carefully taaff the resulting cost savings against
such performance degradation. Additionally, to realizzhammprovements, a data center must employ
mechanisms that prevent (make statistically negligib$ades of types (i)-(iii). In this paper, we
develop a system that effectively provisions power whildradsing these concerns.

In general terms, it is our contention that understandiegpthwer usage behavior of hosted ap-
plications and employing techniques that are aware of titksgyncrasies can allow a data center to
make more informed provisioning decisions compared taiegjsechniques. To validate these ideas,
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we explore a combination of several complementary appesach

Research Contributions. The contribution of our research is three-fold.

e Automatic derivation of power needs of aggregatesWe develop a profiling technique to de-
rive statistical descriptions (called power profiles) o frower usage of hosted applications. We
then develop prediction techniques that describe the posage at different levels in the hierarchy
based on profiles of applications placed under these lezajs (he power usage of a PDU supply-
ing power to servers hosting a given set of applicationsaglfy, we identify the limits posed by
fuses throughout the hierarchy in the fornsaktained power budgeds power usage of aggregates
can be compared against these in systematic and statistioehningful ways.

¢ Yield management inspired provisioning techniques.We exploit a number of statistical prop-
erties of power usage that our profiles reveal to proposeawsat provisioning techniques. First,
controlled under-provisionindpased on the tails of power profiles of hosted workloads déeplo
rarely occurring peak power needs. Second, identificatiatatistical multiplexing effectsmong
workloads consolidated under a power supply element is tessedrefullyoverbookpower supply
capacity. Finally, evidence of self-similarity in the pawesage of an important class of work-
loads suggests that these under-provisioning relateds gam likely to result not just for PDUs
that servers are connected to, but even at higher levelsgoégation. Although these techniques
are inspired by literature on yield management as employexiich diverse domains as the air-
line industry [32], telephony and networking [18, 40, 4]da@PU/network/memory resources in
servers/data centers [39, 41], a number of characteriséicaliar to power infrastructure present
us with novel concerns.

e Agile protective systems mechanismg:inally, to enable safe and performance-friendly operatio
despite the above techniques for aggressive provisiorfittgegoower hierarchy, we develop agile
systems mechanisms based on dynamic throttling of the CPUSDAt&te of our servers. Our
profiling and prediction techniques enable a systemataetatf between the cost savings offered
by our provisioning technique and the accompanying perémice degradation.

We implement our techniques in a prototype data center witate-of-the-art PDU supplying
power to multiple servers. We modify the Xen VMM to implemenir agile protective mechanisms
based on dynamically throtting CPU DVFS-states. Using a@etanof well-regarded benchmarks
representative of data center applications, we conductaalei® empirical evaluation to demonstrate
the feasibility and utility of our provisioning approach.

As a representative result, by accurately identifying tloestrcase power needs of hosted work-
loads, our technique is able to improve the number of semtersing copies of the e-commerce
benchmark TPC-W that can be safely connected to a PDU by 15@8pared to the currently preva-
lent practice of using face-plate ratings. Exploiting istadal multiplexing among the power usage
of these servers along with controlled under-provisior(img 10%) based on tails of power profiles
offered a further gain of 100%. Furthermore, evidence dtsatilarity in the power usage of some
workloads suggests that such gains can be expected evesr highn the power hierarchy. Reac-
tive techniques implemented in the Xen VMM running on ouvees dynamically modulated CPU
DVFS-states to contain power draw within safe limits despitir aggressive provisioning. Finally,
information yielded by our profiles also provided ways ofiroling the performance degradation re-
sulting from our under-provisioning. For the experimenb\ad the average response time of TPC-W
sessions only grew by 4% from 298 msec to 310 msec93Hepercentile of grew from 1.59 sec to



1.78 sec, a degradation of only 11.65%.

Road-map. The rest of this paper is structured as follows. We providekbeound on power con-
sumption in data centers in Section 2. We conduct an empsicaly of power consumption in
consolidated settings in Section 3. Based on lessons leamitthis study, we develop techniques for
improved provisioning and usage of power infrastructur&attion 4 and address associated relia-
bility concerns in Section 5. We present our prototype imp@atation in Section 6 and conduct an
experimental evaluation of our techniques in Section 7aliinwe discuss related work in Section 8
and conclude in Section 9.

2 Power Provisioning Overview

In this section, we provide necessary background on the pswaply infrastructure and the hosting
model assumed in our data center.

Power Supply Hierarchy. In atypical data center, a primary switch board distriby@ser among
severalUninterrupted Power Supply Sub-statioi$PS; 1,000 KW) that, in turn, supply power to
collections ofPower Distribution Units(PDU; 200 KW.) A PDU is associated with a collection of
server racks (up to 50.) Each rack has several chassis teiath@oindividual servers. Power supply
could be either at the server-level (as in rack-mountedesys} or at the chassis-level (as in blade
servers.) Within all these components, fuses/circuiakees! are used to protect equipment from
surges in the current drawn. We view this collection of powepply infrastructure as forming a
power supply hierarchyvithin the data center, with the primary switch board at e the power
supplies within servers (and storage/networking equigjragrthe bottom, and UPS units, PDUs, etc.
in between.

Power Budgets. Each fuse or circuit-breaker has a time-current charatiecurve: a points, ()

on this curve specifies the maximum power drathhat the fuse can safely sustain ov&ontiguous
time units. For simplicity, we use a single such pdifit ) as thesustained power budgédr the
corresponding level in the hierarchy. Sustained power étgdgre defined over fairly small time
periods—of the order of a few seconds or even millisecondsziofation of this sustained power
budget would mean a draw of Watts or more was sustained over a contiguous periofl time
units. While sustained power is closely related to the notibpeak powethat is frequently used
in literature [16, 28], the difference must be clearly ursieod. Peak power, as is typically defined,
merely captures the maximum power consumed within an detrgl without capturing the time-
scale over which this power usage sustains. Hence, it ddespture the limits posed by fuses well.
For example, a device may have a high peak power consumptibstdl operate safely if this peak
does not sustain long enough to exercise the limits asgolveith the corresponding fuse.

Virtualized Hosting Model. Our hosting model assumes a large cluster of high-end se(say
with dual processors and a few GB of memory) interconnecyeaalliigh bandwidth network for com-
munication. Each server runs a virtual machine monitor (VMilowing multiple applications to be

1A circuit breaker is similar to a fuse in its function excepatit could be reused after an episode of excessive current
draw. We will simply use the term fuse for both henceforth.
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consolidated within a single server if their resource nexaisbe accommodated by the server. In ad-
dition, many of these servers are also connected to a cdasadi high capacity storage device/utility
through a Storage Area Network which facilitates data siggaind migration of applications between
servers without explicit movement of data.

3 Power Profiling and Prediction for Aggregates

In this section, we develop techniques to measure and deawEcthe power consumption of indi-
vidual applications. Borrowing techniques from existingearch, we also derive characterizations
of their resource usage. Finally, we develop techniqguesédigt the power consumption at vari-
ous levels of the spatial hierarchy when these applicattwasconsolidated. Taken together, these
measurements and techniques set the background for inmemis in provisioning the power infras-
tructure that we explore in the following sections.

3.1 Empirical Derivation of Power and Resource Usage Profiles

Our approach for characterizing the power and resourceeustgn application employs an offline
profiling technique. The profiling technique involves rumpnthe application on an isolated server. By
isolated, we mean that the server runs only the system ssrugcessary for executing the application
and no other applications are run on the server during thfdipgogprocess. Such isolation is necessary
to minimize interference from unrelated tasks when deteirrgithe application’s power and resource
usage? The application is then subjected to a realistic workload aeombination of hardware and
software monitoring infrastructure is used to track its poand resource usage.

Profiling Power Consumption. We connect a multi-meter to the server used for our offlindilprg
and use it to measure the power consumption of the serverawmecgt, time units. We find it useful
to convert the resulting time-series of (instantaneous)gp@onsumption samples into a probability
density function (PDF) that we call the applicatiopewer profile Let wﬁ{’ be a random variable
that represents the average power consumption of the apiphcA over durations of/, time units,
wherel, = k - t,, (k is a positive integer.) Note thatﬁf represents the average consumption over
any consecutive interval of sizé,. It is estimated by shifting a time window of siZg over the
power time-series, and then constructing a PDF from thelsmya Figure 2 illustrates the process
of converting a power usage time-series into a power prolletice that our technique takes each
power sample to be the power consumptibroughoutthe ¢, time units preceding it. Clearly, the
inaccuracies due to this assumption grow wjthFinally, as part of our profiling, we also record the
idle power of the server running the applications (127-14fo¥\bur servers.)

Profiling Resource Usage. We use measurement techniques similar to those existirggéearch [1,
30, 39] to record resource scheduling events of interesteBgrding CPU scheduling/de-scheduling

2In practice, a distributed application with multiple conmemts may require multiple servers to meet its resource
needs. We only consider applications whose resource naadseamet by a single server. Our technique extends to appli-
cations requiring multiple servers by simply running thelagation on the appropriate number of servers and conaigicti
measurements on each of them.
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Figure 2: lllustration of the derivation of a power profil®ifn a power consumption time-series for
t, =tandl, = I.

instants for the virtual machine running our applicatiorg @erive its CPU usage profile, an ON-
OFF time-series of its CPU usage. Similarly, packet transimigreception times and lengths yield
its network bandwidth usage profile. We also record timé&sesf memory consumption and disk
I/O requests made by the application. Similar to power megseants, we find it useful to construct
resource usage PDFs from these profiles. Finally, we alsmad®DFs of application-specific perfor-
mance metrics (e.g., response time, throughput.)

Discussion on Our Profiling Technique. The efficacy of our provisioning depends crucially on the
credibility as well as the feasibility of our offline profilin

e On the feasibility of collecting profilesThe workload used during profiling should be both re-
alistic and representative of real-world workloads. Thare a number of ways to ensure this,
implying that offline profiling is not unreasonable to assulMhile techniques for generating such
workloads are orthogonal to our current research, we nateathumber of different well-regarded
workload-generation techniques exist, ranging from tleeaisynthetic workload generators to the
use of well-known benchmarks, and from trace replay of datwakloads to running the appli-
cation in a “live” setting. Any such technique suffices for qurpose as long as it realistically
emulates real-world conditions. In fact, (with regard toming an application in a live setting)
many data center applications do start in isolation. Coresaftyy profiling can be done during
the early stages of application deployment, similar to graposed in current research [39, 37].
Furthermore, workload patterns are often repetitive ovenestime granularity (such as daily cy-
cles [20]), providing opportunities to incorporate inged confidence into gathered profiles by
conducting multiple measurements.

e Dealing with varying resource/power usagémplicit in the power/resource profiles described
above is an assumption of stationarity of power/resouregeidehavior. Executions of realistic
applications are likely to exhibit “phases” across whichitlpower and resource usage behavior
change significantly. An example of this is the change inues®needs (and hence power con-
sumption) of a Web server whose workload exhibits the wedvkn “time-of-day” variation [20].
Similarly, many scientific applications alternate betweeing significant amounts of 1/0 (when
reading in parameters from files or dumping results to themd)@mputation. Clearly, the utility



of our power profiles depends on effectively determininghspltases. Power and resource profiles
could then be derived separately for every such phase. Emgpour techniques to deal with these
issues is part of our future work. In this paper, we limit @lves to a single profile per-application,
exceptin Section 7.4, where we explore a simple techniqdettect a significant change in a power
profile.

e Measurement infrastructure related consideratiohote that due to our ability to only measure
power usage at the granularity of the entire server (as @upts measuring the power usage of
constituent components such as CPU, disk, etc.), our meaeuate are only an approximation
(in fact, an upper bound) of the power consumed by the agjita By minimizing any other
interfering activities during the offline profiling, we attgt to keep this gap small. A related issue
concerns the parametetsand I, involved in the definition of the variable™. We empirically
study appropriate values for these in our recent reseaict-jially, we restrict our attention to
profiles with the CPU operating at the highest DVFS state. Repubsenting profiles at different
DVEFES states may be found in [7].

e On application modeling We do not concern ourselves with identifying relationshietween
application’s performance metrics (such as response tand)resource usage. This is a well-
studied area in itself [36, 3, 10, 14, 38]. We borrow from fiiesrature whenever it is easily done.
Generally, we make simplifying assumptions about thesemidgncies that we expect not to affect
the nature of our findings.

3.2 Profiling Applications: Key Experimental Results

In this section, we profile a diverse set of applications licsttate the process of deriving an appli-
cation’s power consumption behavior. We also present laaformation about resource usage
and performance. These experiments provide us a numberohgights into: (a) the relationship
between an application’s power consumption and its usagedus resources and (b) important
statistical characteristics of the power usage behavitraesde applications.

[ Dell PowerEdge SC1450 Features [12] ]

Processor Two(2) Intel(R) Xeon 64bit 3.4 GHZ
Main Memory 2GB
L2 Cache 2MB
Hard Disk(2) WD Caviar 40GB 7200rpm
Hard Disk Power TWI/1W (Active/Standby)
Network Interface| Dual embedded Intel Gigabit2 NIC$
Power Supply 450Wx1

Table 1: Specifications of the server used to host the apigitsathat we profile.

[ Signametrics SM2040 Features [31] |

Digits of Resolution 6-1/2
Measurement Rates 0.2/sec - 1000/se
Measurement Range (AC current) 2.5A
Interface PCI

Table 2: Details of the multi-meter used in our profiling.
Our testbed consists of several Dell PowerEdge serverailgleppear in Table 1.) We use one

of these servers for running the applications that we profide connect a Signametrics SM2040
multi-meter (details appear in Table 2) in series with the@osupply of this server. The multi-meter
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sits on the PCI bus of another server which is solely used fygitay purposes. This multi-meter is
capable of recording power consumption as frequently as emery millisecond. Unless otherwise
specified, throughout this section, we hayel,=2 msec. In Section 7, we employ a less accurate
measurement facility within a PDU in our prototype data eemd be able to simultaneously record
power consumptions of multiple servers connected to it. Wethe Xen VMM [2] on our servers
with each application encapsulated within a Xen domain.

The server running the application is connected to the rmtier while the remaining servers
are used to generate the workload. We report our obsergatmnthe representative applications
listed in Table 3. In our environment, the CPU is the largesitrtoutor to power consumption, so
we find it useful to classify these applications based orr 68U usage. Applications in the SPEC
CPU2000 suite ar€PU-saturating in that they are ready to use the CPU at all times. The remain-
ing applications alternate between using the CPU and bewgkéd (e.g., on I/O, synchronization
activities, etc.) and their CPU utilization depends on thekload they are offered. We profile these
non-CPU-saturatingpplications at different workload intensities. TPC-W isfged with the num-
ber of simultaneous Web sessions varying from 10 to 100, égrements of 10. For experiments
involving TPC-W, we represent the workload intensity as TPGeWihere “x” is the number of si-
multaneous Web sessions. For experiments involving SirepMedia Server, 3Mbps is used as the
streaming rate; Streaming(x) represents a workload of liehts. Finally, the workload intensity for
SPECjbb2005 can be controlled using a tunable parametatidigtthe number of “warehouses” it
stores. We use a value of 6 for this parameter throughoup#psr.

[ Applications ]
TPC-W [33] 3-tiered NYU implementation of the TPC-W
Transactional Web-based E-commerce benchmark
Streaming Media Home-grown UDP streaming server, Streamg
MPEG-1 to specified no. of clients & data rate
SPECjbb2005 [35] SPEC'’s 3-tiered client-server benchmark
Emulates server-side Java applications
SPEC CPU2000 [34] SPEC CPU2000 suite (Art, Bzip2, Mcf, Mesa)

Table 3: Salient properties of our applications. TPC-W, &teg Media Server, and Specjbb2005
are non CPU-saturating, whereas applications in the SPEC @Fite are CPU-saturating.

We now present key results from our profiling study.

Temporal Variations in Power Usage. We find that all our applications exhibit temporal variagon
in their power usage to different degrees. Given that CPUuwmoes significantly more power than
I/O devices in our environment, not surprisingly, powerfijes for non CPU-saturating application
(Figures 3 (a)) are found to exhibit higher variance than GRtlrating application (Figures 3 (b).)
Specifically, in the profiles reported in Figure 3, the vacof the TPC-W and Streaming profiles
were 92 and 84 compared with only 47 and 59 for Bzip2 and Mcheesvely. The CPU usage of a
non CPU-saturating application exhibits an ON-OFF behaemresponding to the application being
in running and blocked states, respectively. When such alicappn blocks, its power consumption
corresponds to the server’s idle power. This ON-OFF CPU usaggibutes to the higher variance
in its power consumption. Intuitively, we expect that onrgeconsolidated under common power
elements, applications with higher variance in their pousage would yield larger reductions (over
worst-case provisioning) in required power capacity veistical multiplexing effects. The exact
extent of these savings would depend on the particular sgiffcations being consolidated together.
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Application Power usage percentile (W)
10077 [ 99%" [ 95tF T 90" | Avg.
TPC-W(60) 260.4 | 236.4 | 233.2 | 229.2 | 185.5
Streaming(100)| 242.4 | 227.4 | 214.8 | 208.2 | 184.1
Bzip2 252.6 | 242.4| 237.2 | 235.1| 224.9

Table 4: Salient aspects of the power profiles of TPC-W, Stiegynand Bzip2 sampled at 2 msec
granularity.

Tails of Power Profiles. The nature of the tail of a resource requirement distriloutimucially affects
savings that under-provisioning (that is, provisioningslé¢han what the worst-case needs suggest)
can yield. In Table 4, we present the'", 95, and90*" percentiles of the power profiles of TPC-
W(60), Streaming(100), and Bzip2 along with their peak andagye values. We make two useful
observations. First, for all the applications, the wos$e power needs (in the range 240-260 W)
are significantly less than the power supply provisionedhwibur server (450 W, recall Table 1.)
Second, th@9** and95" percentile needs are lower than the worst case by up to 10%g thuk 90"
percentile is lower by up to 15%. Together these results esigfpat controlled under-provisioning
based on power profile tails can potentially bring about capand cost savings.

Self-similarity in Power Usage. A final statistical feature worth investigating in our pre#lis the
presence (and extent) of self-similarity [26]. Due to ther&rchical nature of the power infrastructure
(recall Section 2), the presence of self-similarity hasri@sting implications on capacity provisioning
at higher layers of aggregation (PDU, UPS, etc.) The wetivkm Hurst parameter (H) is one way
to quantify the self-similarity exhibited by a process. iétslin [0.5, 1.0] with higher values repre-
senting larger degrees of self-similarity. We calculate kurst parameter for the power time-series
of our applications. We find the Hurst parameter toOks, 0.83, 0.76, and0.52 for TPC-W(60),
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SPEC]jbb2005, Bzip2 and Streaming(100), respectively. Duleedierarchical nature of the power
infrastructure (recall Section 2), the presence of safilarity has interesting implications on capac-
ity provisioning at higher layers of aggregation (PDU, URE,) Specifically, applications with (i)
long tails in their power profileand(ii) high self-similarity in their power time series, ar&dily to re-

tain these characteristics (i.e., long tails/burstinessh at higher levels of aggregation. In particular,
since TPC-W(60) has a long tail (refer Table 4) and a high Huastpeter, we expect the aggregate
power series of multiple TPC-W(60) server instances to alsibéxourstiness. SPECjbb2005, that
exhibits a high Hurst parameter along with low burstinesss@nts a contrasting case: we expect
power elements consolidating copies of this applicatioexjeerience power usage patterns with low
burstiness. We validate these intuitions in Section 3.3 &/t study power usage of such aggregates.

3.3 Prediction Techniques for Aggregates

Crucial to provisioning levels in the hierarchy higher thae server (PDU, UPS, etc.) are ways to
combine the power profiles of applications running on the&exsrbeneath this level to predict their
aggregate power usage. While predicting the average andle@eak of such an aggregate is fairly
straightforward, doing the same for sustained power (f#waldefinition in Section 2) is non-trivial.
We employ our recent research which combines power and nesogage profiles of individual ap-
plications and predicts the behavior of sustained poweswmed at various levels (server, PDU, and
higher) when these are consolidated. A representativdt iesoresented in Figure 4 and Table 5.
As shown, for a PDU connected Toservers, each consolidating TPC-W(60), our technique pieedic
within reasonable error margins (1-5%). For a detailedaxgtion of our prediction technique, please
refer to our Technical Report [7].

As suggested in Section 3.2, we observe that the sustaiveelr monsumption of this collection
of servers, each running an instance of the relatively purBtC-W(60) application, also exhibits a
longer tail (e.g., compare tH&®0'* and90'" percentiles reported in Table 5) than those for aggregates
of (i) the less bursty SPECjbb2005 application and (ii) tes leelf-similar Streaming Server (see [7]
for more details.)
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Power Measured Predicted Error
percentile | Sustained power (W) sustained power (W) (%)
80 1143 1181 3.2
90 1171 1201 2.4
99 1236 1250 1.1
100 1269 1300 2.4

Table 5: Efficacy of our sustained power prediction on a PDhkotidating 7 Servers each running
TPC-W(60). We compare the tail of the measured power with cedipted power.

4 Improved Provisioning of Power

In this section, we propose techniques that utilize the longfand prediction techniques developed
in Section 3 to better provision the power hierarchy in a datater. While doing this, the data center
must strike a balance between the cost savings and the perfice degradation likely to result due
to the protective mechanisms that enable safe operationglepisodes of power draw in excess of
provisioned capacity.

4.1 Under-provisioning Based on Power Profile Tail

Sections 3.2 and 3.3 reinforce recent results suggestaigtbvisioning based on the face-plate rat-
ings of servers severely under-utilizes the power inftestire [24, 15]. In fact, these results suggest
that a data center can even go a step further—given the eftbutstiness present in the power usage
of many commonly hosted applications, we can realize furitmprovements by provisioning less
conservatively than for the worse-case. This has two comgigary implications at each level of the
power hierarchy: (i) its power supply can be replaced with wiith lower capacity (and cost) and/or
(i) it can supply power to a larger overall set of devicesreeted in the levels beneath it. (Although
we will focus on (ii), the gains in (i) are easily understoaiell.)

For ease of exposition, let us assume that all sustainedrgovagets in the following discussion
are defined over a unit time period - the second element of uk&aisied power budget pair will
therefore be omitted. It is easy to generalize this disomst budgets defined over arbitrary time
periods. Let us denote by the sustained power budget associated with a power supgtyesitE.

Let n elements drawing power frod be denoted,, ..., e,, and their (predicted) sustained power
profiles be denoted,, . .., u,. 2 Finally, letu? denote the' percentile of the distribution. Under-
provisioning the capacity at elemehtimplies ensuring the following condition:

n
100*[)1 .
Z U, S B7

=1

This should be compared with provisioning the power capasiitthis element for the worst-case
needs:

> u” < B )
=1

The degree of under-provisionipgfor element; should be chosen based on a desirable trade-off be-
tween the cost savings accrued from under-provisioninglamg@erformance degradation that occurs.

3This notation is general enough to capture under-provisipat any level. For example, i denotes a server (with
its power supply being the candidate for under-provisighithe elements; are applications consolidated on it. The
specific level for which we evaluate our techniques considd?DU as the elemeft supplying power to servers denoted
by €;.
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Figure 5: lllustration of our techniques based on undexigroning and statistical multiplexing/over-
booking as applied to a PDU supplying power to a collectiosasfers.

The gain offered by the provisioning as represented by ftar(il) over worst-case provisioning is
" (ul — 4}, Clearly, applications with more bursty power profiles woyikeld higher gains

at the PDU level. Furthermore, as argued in Section 3.2, exiésrconsolidating bursty workloads

underneath them are also likely to experience bursty posage, implying gains even at these higher

levels.

4.2 Exploiting Statistical Multiplexing

If the elements consolidated at a given level exhibit poveage patterns that complement each other
temporally, then statistical multiplexing gains becometivexploiting. In simple termgrovisioning
for the tail of aggregates can be more gainful than provigigrfor the sum of individual tailgas was
done in the under-provisioning technique above.) In SacB@, we saw evidence of appreciable
temporal variations for a subset of our applications. Addmthe terminology introduced above the
symboll/ for the sustained power profile at eleméntwe can enhance our provisioning technique
as follows:

U P < B, p>0. (3)

Rather than under-provisioning the “share” of each elenagmdependently as in (1), this tech-
nique does so for thaggregated needsf all these elements. A key point to note here is that under-
provisioning and statistical multiplexing anet mutually exclusive but complementafthe aggrega-
tion U representing multiplexing of underlying power usages iadpender-provisioned. The degree
of under-provisioning should be chosen based on the following considerationst, Firshould be
possible to distribute it into individual degrees of un@esvisioning ; for elemente;) that pro-
vide desirable trade-offs between cost savings and pe#iocen Second, (as mentioned in the last
technique) mechanisms should be present at (and belowgtbedf elements; in the hierarchy to
enforce the power limits corresponding to these degreesadémuprovisioning. We will address these
issues in Section 5.
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4.3 Controlled Over-booking of Power

A final enhancement to our provisioning technique incorfesraver-bookingof power capacity at
E. Intuitively, if the power needs of the aggregate constéidebelow element are substantially
lower than the capacity, then a small degree of over-boosamgfurther improve the gains offered by
statistical multiplexing. We incorporate an over-bookiagtor O as follows to achieve this:

U P <B.(1+0); p,0>0. (4)

Figure 5 summarizes all of these techniques for a PDU supplyower to a group of servers.

5 Reliability and Performance Concerns

We consider, in turn, concerns of reliability and perforimathat must be addressed to gainfully
utilize the provisioning techniques developed so far.

5.1 Enforcement of Power Budgets

Our techniques result in (or increase) the likelihood osedes where the power needs at one or
more levels within the hierarchy exceed its capacity. Ther-@rovisioning based practices prevalent
currently render such events practically impossible. Bsleemedial actions are taken during such
an occurrence, extremely undesirable outcomes (e.g.,sesabthe hardware becoming unavailable,
thermal exigencies that could affect the reliability ofthaare, among others) could result. Realizing
any meaningful usage/cost gains for the power infrastreatay require setting the provisioning pa-
rameters (e.gp andO introduced in the previous section) throughout the hidnatuigh enough to
make the likelihood of budget violations non-negligibleurfhermore, unpredictable/hard-to-predict
workload changes (such as an overload experienced by ammeee site [22]) may also render
budget violations more likely than predicted by profilingsbd on prior workload patterns. These
concerns necessitate mechanisms within a data centerathabmpletely avert such episodd=or-
tunately, as demonstrated by several recent researchseffoich mechanisms are realizable (more
details in Section 8.)

We rely on the ability of the consumers of power (e.g., serwerour work) to operate at mul-
tiple “power states” (e.g., CPU DVFS state) that allow traffs-between power consumption and
resource capacity. We employ reactive techniques basedaterwarks within our power hierarchy
that utilize dynamic transitions to lower power states terapower budget violations. Conceptually,
when the watermark for an element in the hierarchy is exabdtle data center triggers throttling of
the appropriate subset of its hardware. A watermark for ameht with a sustained power budget
(s,1) is a 2-tuple(s,, < s,l,, < ) and has the following operational meaning: Upon observing a
sustained power draw at a rate Qf units or more for,, time units, an element should initiate the
throttling of the consumers under it in the hierarchy. As w# @iscuss in Sections 7.2 and §,
chosen to allow enough reaction time for the throttling tokkin, can provide the desired reliable
operation. The choice of a watermark has to strike the faligubalance: Higher values &f reduce
the number of invocations of throttling while resulting ingrer application performance upon these
invocations. We can borrow from the findings of existing eesh, particularly [44], on this front.

In our implementation and evaluation, we use a simple,cstiyichosen watermark (see Sections 6
and 7.2.)
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Application Power usage percentile (W

100t [ 907" | Avg.
TPC-W(60) 209 | 199 | 1643
TPC-W(20) 183 | 152 150

Streaming(100)| 183 159 152.1
Specjbb2005 219 219 217.0

Table 6: Salient aspects of the power profiles of TPC-W, Stiegu8erver, and Specjbb2005 col-
lected by running these applications on servers connegctedrtPDU. Power is sampled at 1 second
granularity.

5.2 Performance Concerns

Like any system employing under-provisioning and/or statal multiplexing of a resource among
competing consumers, our data center must contend withctt@ganying degradation in resource
availability and the resulting performance deteriorataperienced by hosted applications. The pro-
visioning parameters@ndO for each level within the power hierarchy) and the natufief@ty of our
throttling protective mechanisms determine how the peréorce of hosted applications is affected.

As in Section 5.1, our data center can gainfully borrow idizam several bodies of research
on understanding the relationship between applicatiofopaance and different degrees of resource
availability (application modeling), including work byerauthors [6, 38, 39]. Information regarding
the following aspects of application behavior captured by grofiling technique could be utilized
by such models to achieve desired trade-offs between thegaoss and performance degradation:
(i) resource capacity and performance offered to appboatat different power states and (ii) power
profiles with the equipment operating at different powetesta\While we restrict ourselves to a simple
DVFS modulation scheme (described in evaluated in Sectidhifd this paper, we have developed
more sophisticated schemes for power/performance triidad control in related research [5].

6 Implementation Considerations

Infrastructure. Our experimental testbed consist of a 20 Amps PDU from Ralitan[29] that
can supply power to up to 20 servers. The PDU provides a sddtimgerface to read the power con-
sumption of each server connected to it as well as the powesuroption of the entire PDU. The
granularity of the power measurement is 1 second and agcisd@cl Amp. For our experiments,
we vary the number of servers connected to the PDU. Note teatneasurement capability offered
by the PDU is lower fidelity than the multimeter used in Sato(every msec with accuracy within
10~ Amp.) We repeat the profiling experiments described in $acsi using the PDU and report
important power consumption characteristics in Table 6.e#icated set of servers (other than the
ones that were connected to the PDU) were used for genethémgorkloads. Each server hosting an
application runs the Xen VMM 3.1.0 (modified as describeaWwgwith each applications encapsu-
lated within a separate domain. While our techniques appdgémarios where multiple applications
are consolidated on a single server (see [7] for our reldfedgexploring profiling and prediction in
such settings), we restrict ourselves to hosting one agipic per server. To enable live migration [8]
of these VMs across servers, we place all the VM disk imagesNiS partition that is exported to
all the servers connected to the PDU.

Our servers have arich set of power states including 4 DVESaDlock Modulation states (refer
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Table 1.) We switch off the default Linux daemon within Xea@ministrativeDomainOthat dynam-
ically varies the power state based on processor utilizaiide write custom drivers for changing the
power state of our servers. We use the IABRRECTL and IA32CLOCK_MODULATION MSR
registers to change the DVFS and clock modulation statepentively. Since the vanilla Xen VMM
traps and nullifies all writes to MSR registersr(nsr operations), we modify it to enable writes to
these registers.

Watermark-based Budget Enforcement. We briefly discuss the implementation of our technique
based on a watermairfk,, [,,) for enforcing a sustained power budget/). We dedicate a server
other than those hosting the applications or generatindla@ads to initiate reactive throttling and
call it thewatermark-based enforcefhe watermark-based enforcer periodically (once everycl se
monitors the power consumption of the PDU and inspectsalbdwer samples collected over the last
I, time units. If all these values exceeg, it sends throttling commands to all the servers connected
to the PDU using RPCs that specify their new power states. Iiddet, we will discuss in detail
how the watermark-based enforcer selects appropriatétlthgostates for the servers.

7 Experimental Evaluation

7.1 Improvements in consolidation

In this section, we compare prevalent provisioning techesqused in data centers with the techniques
developed in Section 4. We restrict our investigation tcacaty/cost improvements in the number of
servers that can be connected to a PDU and safely operatalrsmprovements are worth exploring
at other levels in the power hierarchy. For all our experita@e assume the sustained power budget
for the PDU to be (1200W, 5 sec). We compare the following {gioning techniques.

Face-plate Provisioning ¢’ P). Face-plate value is the capacity rating of a server spedibieis
power supply. For our servers the face-plate value is 4508\hdgJF’' P, we can connect 2 servers to
our PDU.

Vendor Calculator-based Provisioning { P). Server vendors (including IBM, HP, Sun, and Dell),
in an attempt to help data centers administrators, prowadieutators for estimating the peak power
needs of their servers. Such a calculator takes as inpubtifegaration of a server (number and type
of processors, memory cards, etc.) and expected workldedsity (rough descriptions of CPU, I/O
intensity, etc.) and outputs its power needs. The calcufatwvided by the vendor of our server [13]
(for average load specification) estimates its power regquent to be 385W. Therefore using this
provisioning technique, we would connect 3 servers to oudPD

Profiling-guided Provisioning (UP and SP). The last two prevalent provisioning techniques are
based solely on worst-case estimates of server power néedsntrast, the techniques developed
in Section 4 incorporate application-specific power neetst us denote by P(p;) our under-
provisioning based technique (recall (1)) and$¥(p) the statistical multiplexing based technique
(recall (3).)
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Technique | Servers running instances of TPC-W(6()
No. Servers % Improvement
U P(100) 5 66
SP(100) 6 100
U P(90) 6 100
SP(90) 7 133

Table 7: The number of servers (each running an instance ©fWI60)) connected to a 1200W PDU
by different provisioning techniques. Percentage impnosets reported are ovetP.

Technique | Servers running instances of SPECjbb2005
No. Servers % Improvement

U P(100) 5 66

SP(100) 5 66

U P(90) 5 66

SP(90) 5 66

Table 8: The number of servers (each running an instance BCHMB2005) connected to a 1200W
PDU by different provisioning techniques. Percentage owpments reported are oVErP.

In theory,U P(100) and.SP(100) should coincide. However, due to extremely small probtédi
(smaller thanl0~") being rounded off to 0 in our implementation of sustained/@oprediction, we
observe a difference between these quantities. In fadettdgferences add up to slightly more than
150W at a PDU connected to 7 servers, each running an instéi¢eC-W/(60).

Tables 7-9 present improvements yielded(bl and.SP in the number of servers hosting a di-
verse mix of applications that can be connected to our PDU wither: (i) no under-provisioning
or (ii) under-provisioning of 10%. (Improvements resuitimom the over-booking parametér (re-
call 4) would be qualitatively similar, and we do not invgstie them here.) Whereas the worst-case
sustained power consumption of SPECjbb2005 and TPC-W are dasach other (220W and 210W
respectively as shown in Table 6), due to the longer taisiprbfile, higher gains result in an environ-
ment with servers hosting TPC-W like workloads. In fact, foresmvironment with SPECjbb2005-like
applications, while provisioning based 6hP(100) (i.e., worst-case needs) provides 66% improve-
ment over Vendor Calculator-based provisioning and 150%argiment over face-plate based pro-
visioning, no further improvements result from under-ps@mning. we are able to achieve higher
consolidation for servers running TPC-W(60) as illustratediable 7 whereas no improvement could
be seen for servers running SPECjbb2005 as shown in Table l@e Baillustrate the efficacy of
our provisioning technique for a set of servers runningetiéht kinds of applications. Gains offered
by our provisioning techniques are thus closely dependenihe power usage characteristics of the
hosted workloads.

Finally, we explore a variety of application mixes that letlWween the previous two extremes. We
present a subset of these in Table 9 and find gains ranging3a8mto 133% ovel’ P.

7.2 Sustained Budget Enforcement

We evaluate the efficacy of our watermark-based budget esrfoent technique developed in Sec-
tions 5.1 and 6. For our PDU'’s sustained power budget of ({2@sec), we choose (1200W, 3 sec)
as the watermark.

We evaluate the efficacy of budget enforcement for an inorgasimber of servers—starting at 6

17



[ Technique| No. servers hosting each type of app.% Improvement]|

UP(100) | 3x TPC-W, 1 x SPECjbb, 1 X SM 66%
SP(100) | 3x TPC-W, 1 X SPECjbb, 2 X SM 100%
UP(90) | 3xTPC-W, 1X SPECJBB, 2X SM 100%
SP(90) | 3XTPC-W, 1x SPECJBB, 3X SM 133%
U P(100) 2 X TPC-W, 2 X SPECjbb 33%
SP(100) | 2xTPC-W + 2 x SPECJbb, 2 X SM 100%
UP(90) | 2 X TPC-W, 2 x SPEC]bb, 2 x SM 100%
SP(80) 2 X TPC-W, 2 X SPEC]bb, 3 X SM 133%

Table 9: The number of servers connected to a 1200W PDU bgrdiif provisioning techniques.
Percentage improvements reported are dvét. Each server runs an instance of one of the fol-
lowing: TPC-W(60), SPECjbb2005, and Streaming(100), sheddn TPC-W, SPECjbb, and SM,
respectively.

Power state Predicted Peak of Sustained Power
(DVFS, Clk. Mod.) [ 6servers| 7servers| 8servers| 9 servers
(3.2Ghz,100%) 1191.0W | 1300.0W | 1481.0W | 1672.0 W
(2.8Ghz,100%) 967.6 W | 1138.6 W | 1308.2W | 1478.2 W
(2.8Ghz,50%) 861.7W | 1011.7W | 1162.7 W | 1313.6 W

Table 10: Power consumption of a server running TPC-W(60) vapenating at three different power
states. Bold power values indicate that the correspondingpstate is chosen for throttling by the
watermark-based enforcdregend:Clk. Mod.= Clock Modulation state.

and going up to 9—connected to a PDU. Each server runs amaestd TPC-W(60). The watermark-
based enforcer described in Section 6 sends throttling Gomdsto the servers upon observing three
consecutive power readings above 1200W at the PDU (reealitie sampling interval is 1 sec.) Upon
observing such an episode, the watermark enforcer mussetsaitable power states for throttling the
servers so that the sustained budget remains un-violates isTachieved using a combination of our
sustained power prediction technique and informationegatth during offline profiling. In Table 10,
we record the peak of the sustained power consumption at@efBr varying number of servers
connected to it and made to operate at different power st&teseach of these server aggregates,
we choose the highest power state, for which the peak ofisest@ower consumption is less than
the PDU’s budget. This chosen power state (highlighted biela0 for server aggregates of different
sizes) is therefore guaranteed to bring the system withencdpacity limits. As we can see from
the table, there is no such power state if 9 servers, eachngiifC-W(60), were connected to our
PDU. That is, even if we operate at the lowest possible potede,§ our technique can not prevent
violations of the PDU budget. Throttling is done for a per@f2 seconds (which is the difference
between the time constants of the watermark and the sudtpoveer budget) after which the servers

4Actually, (2.8GHz, 50% CIlk.) is not the lowest power stateoiir server. There are 3 lower power states, but a
server hosting the TPC-W workload crashes if transitioeahty of these lower power states. These states are, therefor
considered infeasible for the TPC-W workload.

Power States
(DVFS (GHz), Clk. Mod. (%)) | (3.2,100) | (2.8,100)| (2.8, 50)

[ Normalized performance | 1 [ 118 | 15.69 |

Table 11: Performance degradation of TPC-W(60) at threerdiftepower states expressed as the
ratio of average session response time with that offerethdgervers operating at the highest power
state (obtained from our offline profilinglegend:Perf.=Performance.
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Figure 6: Sustained power profil&é£5 sec) for a 1200W PDU connected to 7 servers, each running
TPC-W(60), with and without watermark-based enforcement.

revert back to their original power states.

7.3 Performance Degradation

Next, we study any performance degradation resulting fitoarthrottling necessitated by our aggres-
sive provisioning. Using our prediction algorithm, we gsite the probability of the aggregate power
consumption at the PDU exceeding its watermark. This prdibalbeported in Table 12, provides an
estimate of the amount of time an application would find ityeerunning at a throttled power state.
We use our offline profiling technique (See Table 11) to ederttze performance degradation caused
by different power states. We compare the predicted pedoo® degradation with the measured val-
ues in Table 12. Since our watermark is (1200W, 3 sec), evdreifpplication needs to consume
1200W or more all the time, it will be throttled only 60% of thme (3 seconds at the highest power
state, 2 seconds at a throttled state). Therefore predictstmark violation in Table 12 is computed
by using the probability of violating the watermark (fromegicted CDF) and then multiplying that
probability by 0.6.

No. of Watermark Violation | Perf. Degradation| Feasible?
Servers| Meas. (%) | Pred.(%)| Meas.| Pred.

6 0 0 I 1 YES
7 2 7.2 1.04 | 1.08 YES
8 61.2 59.7 5.2 9.3 YES
9 N/A NJ/A | NJA | N/A NO

Table 12: Predicted and measured watermark violationseaPfDU and normalized performance
degradation for the instances of TPC-W(60), each running @nafrthe servers connected to the
PDU. Performance degradation is expressed as the raticeadvdrage session response time with
that offered by the server operating at its highest powee sfiche column labeleBeasible?indicates
whether we would be able to prevent the sustained budgettédPDU from being violated.egend:
Meas.=Measured, Pred.=Predicted, and Perf.=Performahice=Not Applicable.

In Table 12, our technique indicates that 7 is the most nurobservers that could be safely con-

nected to our PDU and still be operated to offer only a smaflopmance degradation to overlying
TPC-W applications. The predicted degradation was 1.88ewhi& measured degradation upon ac-
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Figure 7: Power consumption recorded at the PDU connectédépvers, each running an instance
of TPC-W(60), with and without the watermark-based budgebreeiment.

tually connecting 7 servers running TPC-W(60) was only 1.04.al¥0 estimate that while 8 servers
can be safely connected and operated, such a configuratiold wesult in significantly degraded
performance (the measured normalized degradation, gthowch smaller than predicted, is still a
significant 5.2.)

We take a closer look at application performance for the gandition connected 7 servers to
the PDU that emerged as the most preferred in the discusbmvea Figure 6 compares the sus-
tained power consumption of a 1200W PDU consolidating 7essrgach running TPC-W(60), with
and without throttling. Also shown is the predicted sustdipower profile for this PDU. Figure 7
compares the power consumption of the PDU with and withoaitvtatermark-based throttling. We
observe that our watermark enforcer is able to completedygt sustained power violations by suc-
cessfully identifying occasions at which the servers sthawal throttled.

7.4 Dynamic Changes in Workloads

We are interested in two aspects of dynamic variations @elileither consume higher power than
indicated by its power profile, which will result in more frggnt violations of watermarks associated
with power supply elements, raising the extent of degradaitn performance (due to throttling.)
Second, a workload may consume substantially lower powaar its profile rendering provisioning
more conservative. We evaluate the following simple medmario detect such changes and adjust
the provisioning parameters accordingly.

We keep track of the recent power profile of the PDU and pecadyi compare it with its predicted
profile. If there is a statistically significant differencettveen these distributions, (as reported by a
well-regarded test such as the Kolmogorov-Smirnov Teg) [de assume the workload has changed
enough to necessitate re-provisioning. Note that uporctietea phase change at the PDU level, we
may want to percolate similar detection technique down fkealchy to single out the application
whose phase has changed. This can be achieved since we bawedicted profile of every server
consolidated in the power hierarchy.

We evaluate a simple scenario to demonstrate the workinigi®hechanism. We consider a set
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Figure 8: lllustration of the measured sustained poweritigions of PDU, before and after the
phase change. Workload change is detected by comparinghaigtributions.
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Figure 9: lllustration of phase change and consequenta@gioning to prevent sustained power
budget violation.

of six servers. Three of these servers run an instance of SBEAP5 each, two servers run TPC-
W(20), and the sixth server runs TPC-W(60). We assume that weraeveded with 2 PDUs P DU,
and P DUs), each with a budget (600W, 5 sec). Based on$H(100) provisioning, we connect two
SPEC]jbb2005 servers and a TPC-W(20) serve? tal/;. The remaining servers (hosting one out of
SPECjbb2005, TPC-W(20), and TPC-W(60)) are connecteediidd/,. We assume that the workload
of the TPC-W(20) connected t8DU, increases in intensity to TPC-W(60), simulating an overload
where 40 new clients open sessions. The measured sustawed ponsumption of? DU, before
and after this workload change, is presented in Figure & fFigigers re-provisioning to accommodate
the increased workload (the exact mechanisms of such réspyning are orthogonal to this work),
that suggests the configuration change shown in Figure Yeathes instance of TPC-W(60) under
PDU; is swapped with the TPC-W(20) undBmD U, to prevent degraded performance for these new
sessions via throttling.

We determine the overheads and effects of migration ingbimehe re-configuration described
above. We use Xen’s live migration facility [8] to migrateetPC-W servers between the PDUs and
find that it approximately take32 seconds to migrate the virtual machines. This causes a fatto
1.37 and2.02 response time degradation for the workloads TPC-W(60) and WRZD), respectively,
during the transition.
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8 Related Work

Research on Provisioning of Power Infrastructure. Server-levelServer vendors (including IBM,
HP, Sun, and Dell [13]), in an attempt to help data centersimidtrators do better provisioning,
provide calculators for estimating the peak power need$eif servers. Such calculators provide
worst-case power estimates for a server given its compammritguration and workload character-
istics. Lefurgy et al. [24] observe that the power suppliesesvers are typically over-provisioned
and report that replacing these with cheaper power suppltesl5% lower capacities results in neg-
ligible degradation in performance. To prevent rare povpgtes from exceeding the capacity, they
implement a reactive technique similar to ours that keepsénver power within safe limits. Felter et
al. [16] observe that different components of a server (CP&muory, etc.) do not require their peak
power simultaneously. That is, the statistical multiphexeffects explored in our paper extend even
to the granularity of disparate resources within a servéreyldevise a technique that dynamically
proportions the total system power among the system conmp®tieereby reducing the power and
cooling requirements of a server.

Cluster-level:Ensemble-level power management [28] by Ranganathan et@is kat provisioning
the cooling capacity as opposed to our work that looks atipiaving power capacity expended
towards operating servers. The authors observe that fowmzkloads, the possibility of their power
consumption happening simultaneously is small and usebietier provision the cooling capacity at
a blade enclosure level. Their results showed that theyldecta realize a reduction of 20% system
power budget with negligible performance impact. Very elgselated work of our research is recent
work by Fan et al. [15] which also looks at provisioning theveo infrastructure for large data centers
at different levels of the power hierarchy. They analyzadiatm a real large-scale Google data center
and observe that 40% additional servers can be accommodtdted the power supply of their data
center. While these observations motivate our researchakeethem one step further and devise a
methodical approach to characterize and statisticallyetstdnd applications’ power usage and then
use it for provisioning the power infrastructure.

While the basic idea of the above techniques (both at the iskEvel as well ais similar to our
contention (exploiting the gap between provisioned capanid actual peak power needs of appli-
cations), in the best While our research shares several tokesis with the above body of work, to
the best of our knowledge, we are the first ones to: (i) empieynbtion of sustained power budgets
at PDUs and beyond to capture the safety concerns for theasfaircuit breakers, (ii) characterize
sustained power needs of individual applications and use tio estimate sustained power behavior
of aggregates, and (iii) use devise provisioning techrsghat can employ these estimates to strike
the desired balance between cost gains and performancehdegyuaranteeing safe operation.

Control Techniques for Power/Performance Trade-offs. CPU throttling has widely been adopted
for enforcing peak power budgets related to: (a) thermastamts/cooling capacity of a server [27]
and (b) provisioning power capacity of a server [24, 15]. Reesrk by Wang et al. [42] develops
a control-theoretic model that enforces a specified powdgéuat a cluster level and dynamically
distributes the power budget among the connected serveesl loa their needs. New IBM servers [21]
are shipped with capability to enforce a specified power budgvery fine time granularity (in order
of msec) by using cpu throttling. Nathuji et al. [25] exteray@r management solutions for the virtual
machines running on virtualized hardware. Raghavendra gx/dllook at co-ordinating the different
power budgets (peak and average power budget) enforceffeakdt granularities. Lot of research
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has gone into evaluating the energy/performance tradeedfapplications which involves keeping
either energy or performance as a constant and optimizinthéother metric [43, 5]. The above
techniques for implementing some form of power budgets angptementary to our work.

Yield Management in Other Areas. Yield management (YM) was first explored in the airline
industry, particularly by American Airlines [32]. YM-inged practices have subsequently been
also explored in areas such as telephony and networking4[d,84], memory management [41],
and CPU/network management [39] for servers. While the gépareiples of under-provisioning,
statistical multiplexing, and overbooking are well-exgld in these diverse contexts, their applica-
tion to power infrastructure presents some unique chadien&uch techniques must be necessarily
accompanied by effective protective mechanisms such & tleveloped in Section 5.1 since the
consequences of violation are disastrous. Also, the fuki@al nature of the power infrastructure
implies that the interactions between decisions taken @bws levels must be taken into account.
While we restricted our efforts to investigating the impatctinder-provisioning at a single level (a
PDU supplying power to multiple servers), developingoaprehensive understanding of provision-
ing parameters for the entire power hierarcisya direction for future research.

9 Concluding Remarks

The central thesis of this research was that by carefullyetstdnding the power needs of hosted
workloads and their aggregates, a data center could signifyjcimprove the cost-revenue trade-off
associated with its power supply hierarchy—ranging fromeselevel power supplies to higher-level
Power Distribution Units (PDUs) and Uninterrupted Powep@y sub-stations. Towards this end, we
developed a measurement technique to derive power profieggptications. Our profiles succinctly
captured key statistical properties of the power usage pliGgiions and lent themselves to the de-
sign of power usage predictors for aggregates of thesecapipins. We designed a novel technique
guided by these power profiles that employed controlled upd®visioning, statistical multiplexing,
and overbooking when provisioning the power infrastruetuOur evaluation on a prototype data
center using well-regarded benchmarks demonstrated #sgoflity and benefits of our technique.
As a representative result, by accurately identifying tloesivcase needs of hosted workloads, our
technique was able to improve the number of servers thatidoellsafely connected to a PDU by
150% compared to the currently prevalent practice of usingplate ratings. Exploiting statistical
multiplexing among the power usage of these servers alotigoentrolled under-provisioning based
on tails of power profiles offered a further gain of 100% owasd-plate provisioning. Furthermore,
evidence of self-similarity in the power usage of some waakls suggests that such gains can be
expected even higher up in the power hierarchy. Reactivanigebs implemented in the Xen VMM
running on our servers dynamically modulated CPU DVFS-stateontain power draw within safe
limits despite our aggressive provisioning. Finally, imf@mtion yielded by our profiles also provided
ways of controlling the performance degradation resuliagn our under-provisioning: e.g., ti9""
percentile of response time of TPC-W sessions grew from 8%s1.78 sec, a degradation of only
11.65%.
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Availability

A detailed technical report describing the sustained pquwvediction technique employed in this
research [7], a Xen patch for enabling MSR writes and implging our watermark-based budget en-
forcement mechanism, and all experimental data are al@gdthttp://csl.cse.psu.edu/hotmap
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