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ABSTRACT 

We present an overview of recent results related to the single server queue with general independent 
and identically distributed service times and a batch Markovian arrival process (BMAP). The BMAP 
encompasses a wide range of arrival processes and yet, mathematically, the BMAP/G/I model is a 
relatively simple matrix generalization of the M/G/l queue. Stationary and transient distributions 
for the queue length and waiting time distributions are presented. We discuss numerical algorithms 
for computing these quantities, which exploit both matrix analytic results and numerical transform 
inversion. Two-dimensional transform inversion is used for the transient results. 

1. Introduction 

It is well known that the basic M/G/I and GI/M/l queueing models can be analyzed via embedded 
Markov chains. As shown in Neuts [1] [2], a large class of interesting queueing models can be analyzed via 
matrix generalizations of these embedded Markov chains. These are called M/G/I-type and GI/M/l­
type Markov chains, respectively. 

Within the class of models that can be analyzed by M/G/l-type Markov chains is the BMAP/G/l 
queue; it is the generalization of the M/G/I model in which the Poisson arrival process is replaced 
by a batch Markovian arrival process (BMAP). Not only is the embedded Markov chain at departure 
epochs in a BMAP/G/l queue an M/G/l-type Markov chain, but the entire model tends to be a matrix 
generalization of the M/G/l queue (or, more exactly, its batch arrival generalization). 

This paper is a tutorial on the BMAP and the BMAP/G/l queue. The BMAP was first introduced 
with alternative notation as the versatile Markovian point process in Neuts [3], and the BMAP/G/l 
queue was first analyzed (under the name N / G /1) by Ramaswami [4]. A major focus here is on exact and 
efficient numerical algorithms for both the steady-state and transient distributions for the BMAP/G/l 
queue. This paper is largely based on the author's (mostly joint) work [5]-[12] but we give a general 
history in §4. 

The idea of a BMAP is to keep the tractability of the Poisson arrival process but significantly general­
ize it in ways that allow the inclusion of dependent interarrival times, non-exponential interarrival-time 
distributions, and correlated batch sizes. The BMAP includes as special cases both phase type renewal 
processes (which include the Erlang, Ek, and hyperexponential, Hie, renewal processes) and non-renewal 
processes such as the Markov modulated Poisson process (MMPP) and many other processes in the 
applied probability literature. These are reviewed in §3. The class also allows correlated batch size 
distributions and is closed under superpositions, thinning, etc .. 

Matrix analytic solutions to the BMAP/G/I queue have been available for some time now (see 
Ramaswami [4]) but the expressions were not in a form that allowed feasible numerical implementation 
in their full generality. Recent results (reviewed in §4) have resulted in much more transparent solutions 
that show that this model is indeed a simple generalization ofthe ordinary M/G/l queue. In fact, many 
expressions for the performance measures of interest are natural matrix analogues of the corresponding 
expressions for the M/G/l queue. The purpose of this review is to demonstrate the simplicity of the 
results which may occasionally have been obscured by the technicalities governing their derivations . 
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This is accomplished by displaying the relevant results next to the corresponding MIG/I formulas. 
There are no proofs in this paper; we refer the reader to referenced papers for proofs. 

The rest of the paper is organized as follows. In §2 we define the BMAP, and in §3 we describe a 
number of special cases. A brief history of the BMAP and BMAPIG/I queue is presented in §4. This 
section may serve as an annotated bibliography of recent work related to this model. Expressions for 
the transforms of the stationary and transient queue length and waiting time distributions are presented 
in §5. Actual algorithmic procedures for obtaining numerical results for the performance measures of 
interest are discussed in §6. In particular, we discuss some of the standard matrix analytic algorithms 
as well as new transform inversion algorithms. Several examples are discussed in §7. A small list of 
current and future extensions to this model is discussed in §8. 

2. The Batch Markovian Arrival Process 

We motivate the BMAP by starting with a constructive definition of the Poisson process. Start with 
a continuous-time Markov process with one state where the same state is visited successively. Since 
sojourn times in a Markov process are exponential, a sojourn time in this state expires after an expo­
nentially distributed interval with some rate, say A, but since there is only one state, it is immediately 
revisited and another sojourn begins. If we construct a point process by associating an arrival with 
each transition in the above Markov process then the resulting process is Poisson. 

One way to generalize the Poisson process is to relax the assumption that interarrival times are 
exponentially distributed. In the context of the Markov process representation above, we can do this 
by adding additional (auxiliary) states to the Markov process and associating arrivals in the point 
process with certain transitions in the underlying Markov process. Let the underlying Markov process 
be irreducible and have infinitesimal generator D. The sojourn time in state i is thus exponentially 
distributed with parameter Ai ~ - Dii. At the end of a sojourn time in state i, there occurs a transition 
to another (or possibly the same) state and that transition mayor may not correspond to an arrival 
epoch. With probability Pi(O, i), 1 ::5 i ::5 m, i ;:f:. i, there will be a transition to state i without an 
arrival. With probability Pi(k, i), k ~ 1, 1::5 i ::5 m, there will be a transition to state i with a batch 
arrival of size k. We therefore have, for 1 ::5 i ::5 m, 

m 00 m 

2:pi(O, i) + 2:2:pi(k,i) = 1 . 
;=1 
#i 

k=l j=l 

It is convenient to represent the evolution of the system in terms of a sequence of matrices {Dk, k ~ O}, 
by letting (Do)ji = -Ai, 1::5 i::5 m, (DO)ij = AiPi(O,i), 1 ::5 i,i ::5 m, i ;:f:. i, and (Dk)ij = AiPi(k,i), 
k ~ 1, 1 ::5 i, i ::5 m. This definition implies that L:~o Dk = D, the infinitesimal generator of the 
underlying Markov process. Intuitively, we think of Do as governing transitions in the phase process 
that do not generate arrivals and Dk as the rate of arrivals of size k (with the appropriate phase change). 

The matrix Do has strictly negative diagonal elements, nonnegative off-diagonal elements, row sums 
less than or equal to zero and we assume it is nonsingular. In other words Do is a stable matrix (i.e., 
all of its eigenvalues have negative real parts; see e.g., p. 251 of Bellman [13]). This implies that the 
interarrival times are finite with probability one (see Lemma 2.2.1 of Neuts [1]) and that the arrival 
process does not terminate. 

Let 1r be the stationary probability vector of the Markov process .with generator D, i.e., 1r satisfies 

1rD = 0, 1re = 1 , (1) 

where e is a column vector of 1 'so Then the component 7rj is the stationary probability that the arrival 
process is in state j. The stationary arrival rate of the process is 

00 

A = 1r 2: kDke = 1rfJ , 
k=l 

2 

(2) 
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where 11 == L kDl:e. 

A key quantity for analyzing the BMAP/G/l queue is the matrix generating function 

00 

D(z) = LDl:zl:, 
1:=0 

D(z) = ->. + >.z, for Izl $ 1 . 
(3) 

(BMAP) (Poisson) 

Here, and tliroughout this paper, we display certain results for the Poisson process or M/G/l queue 
alongside the corresponding results for the BMAP or BMAP/G/l queue, respectively, to highlight the 
similarity of these expressions. 

Let N(t) count the number of arrivals in (O,t] and J(t) represent the auxiliary state or phase at time 
t+. It is significant that the pair (N(t), J(t)) is a continuous-time Markov chain on the state space 
{( i, j) : i 2: 0,1 $ j $ m} with infinitesimal generator 

Do 
Q= 

[

Do Dl 

where the states are listed in lexicographic order. 

l 
Let Pij(n, t) = P(N(t) = n, J(t) = j 1 N(O) = 0, J(O) = i) be the (i,j) element ofa matrix pen, t). 

That is, pen, t) represents the probability of n arrivals in (0, t] plus the phase transition. Let the matrix 
generating function P*(z, t) be defined by 

00 

P*(z, t) = L pen, t)zn, for Izl $ 1, t 2: ° . 
n=O 

By a routine argument conditioning on the first transition, one can get 

P*(z,t) = eD(z)t, 

(BMAP) 

P*(z, t) = e(->'+AZ)t, 

(Poisson) 

for Izl $ 1, t 2: ° , (4) 

where eD(z)t is an exponential matrix (see e.g., p. 169 of Bellman, [13]). By differentiating with respect 
to z and setting z = 1 in (4) we get the expected number of arrivals in (0, t] given that the phase at 
time t = 0 is i as the t'th element of the vector >.te + (I - eDt )(e1l' - D)-l11. See Narayana and Neuts 
[14] for higher moment formulas, asymptotic expansions and the correlation of the number of arrivals 
in nonoverlapping intervals. 

3. Special Cases 

Many familiar arrival processes can be obtained as special cases of the BMAP. Here is a selected sample 
of some of the more useful examples. 

3.1. Single Arrivals 

(A BMAP with all batch sizes equal to one is called a Markovian arrival process (MAP).) 

a) Poisson process. As described above; in this case Do = ->., Dl = .A and DI: = 0, for k 2: 2. 
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b ) PH-renewal process. The phase type (PH) renewal process introduced in Neuts [15] (see Neuts [1], 
chapter 2) contains Erlang, E/c, and hyperexponential, H/c, as well as common renewal processes 
with inter arrival time distributions distributed as finite mixtures of these. A phase type renewal 
process with representation (a, T), is a BMAP with Do = T, Dl = -Tea, and D/c = 0, for k ~ 2. 

c) Markov-modulated Poisson process (MMPP). The MMPP is the doubly stochastic Poisson process 
whose arrival rate is given by ~[J(t)] ~ 0, where J(t), t ~ 0, is an m-state irreducible Markov 
process. The arrival rate therefore takes on only m values .\1,"" .\m, and is equal to.\j whenever 
the Markov process is in the state j. If the underlying Markov process has infinitesimal generator 
R and if A = diag(.\l,"" .Am), then we have Do = R - A, Dl = A, and D/c = 0, for Ie ~ 2. 
(See Heffes and Lucantoni [16] for an application of this process to the superposition of packetized 
voice.) 

d) A sequence of PH interarrival times selected via a Markov chain. For example, assume we have 
three PH distributions with representations (a, T), ({3, S), ("Y, L) labeled 1,2, and 3, respectively, 
and that successive inter arrival times are chosen from these according to a Markov chain with 
transition matrix P. The reSUlting semi-Markov process is the MAP defined by 

[

T 0 0] 
Do = 0 SO, 

o 0 L 

and D/c = 0, for k ~ 2, where TO = -Te, SO = -Se and LO = -Le. This process was originally 
studied in Latouche [17]. As an interesting special case of this, we could have an arrival stream 
consisting of a sequence of Erlang inter arrival times where the orders of successive Erlang random 
variables form a Markov chain. Also, a trivial special case is the alternating PH-renewal process. 

e) Output and overflows from finite Markovian networks. Since the MAP is defined as point process 
where arrivals are associated with transitions of an underlying Markov process, it is dear that the 
overflows and/or outputs of any finite state Markovian network can be modeled as a MAP. From 
a practical viewpoint the size of the network could, however, become a limiting factor. 

3.2. Batch Arrivals 

a) Batch Poisson. Let the arrival rate of batches be "I and the successive batch sizes have probability 
mass function {Pk, k ~ I} and probability generating function p(z). In this case, m = 1, and the 
sequence {D/c} are scalars with Do = -"I, and D/c = "IPk, for k ~ 1. Note that D(z) = -"I+"IP(z). 

b) A MAP with i.i.d. batch arrivals. Consider a MAP defined by the pair (Do, Dl) where each arrival 
epoch corresponds to a batch arrival. If successive batch sizes are independent and identically 
distributed (i.i.d.) with probability mass function {Pj, j ~ I} then this process is a BMAP with 
Dj = pjD1 , j ~ 1. 

c) A batch Poisson process with correlated batch arrivals. Consider a batch Poisson process where 
the batch size distribution of successive batch arrivals is chosen according to a Markov chain. For 
example, let {qi(k), Ie ~ I}, 1 ::; i ::; m, be a set of m discrete probability mass functions and 
let P be the transition probability matrix of an m-state, irreducible Markov chain. Let the rate 
of the Poisson process be .A and assume that successive batch size distributions are chosen from 
the set {qi('), 1 ::; i ::; m} according to P. This process is then a BMAP with Do = -.\1 and 
(Dk)ij = .APijqj(k). A simple example is the overflow process of a M X /M/1/N system. This 
example is easily extended to a MAP with correlated batch sizes. 

d) N euts' versatile Markovian point process. This process, introduced in N euts [3], is constructively 
defined by starting with a PH-renewal process as a substratum. There are three types of arrival 
epochs which are related to the evolution of the PH-renewal process as follows. There are Pois­
son arrivals with arbitrary batch size distributions during sojourns in the states of the Markov 
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process governing the renewal process. The arrival rates of the Poisson process and the batch size 
distributions may depend on the state of the Markov process. The underlying Markov process 
can change states either with or without a corresponding renewal. Each time the process changes 
states there is a batch arrival (the batch size may be 0) where the batch size distribution can de­
pend on the states before and after the change and whether a renewal occurred. The construction 
of this process allows easy incorporation of certain qualitative features into a model of a traffic 
stream. For example, background arrivals could be inhibited or stimulated by upcoming batch 
arrivals, etc. It can be shown that this process is equivalent to the BMAP. In Lucantoni [7] 
it was shown how an N-process could be represented as a BMAP. To go the other way is less 
obvious but the idea is to pick a state jfor which (Dn)jk is nonzero for some nand k. Whenever 
a batch arrival of size n occurs at a transition from j to k assume that it happened through an 
artificial absorbing state. It is then easy to construct the parameters of the N-process in terms of 
the sequence {Dk}. An advantage of viewing the process in the framework of the BMAP is that 
the notation is much simplified. 

e) A Markov-compound Poisson arrival process. The class of processes discussed in Pacheco and 
Prabhu [18] is equivalent to the BMAP except that their general formulation allows the auxiliary 
phase variable to have an infinite state space and also allows D to be reducible and Do to be 
singular. If D is reducible then the stationary version of the process might not be unique; moreover, 
when Do is singular there are two further possibilities. Either the auxiliary phase will enter an 
irreducible subset from which point the process is a BM AP or the process will terminate (see 
Lemma 2.2.1 of Neuts [1]). When D is irreducible and Do is singular then the process is trivial 
and has no arrivals, i.e., P(N(t) = 0) = 1 for all t (see Lemma 5.4.1 and the following remark on 
pg. 289 of Neuts [2]). 

f) A superposition of BMAP's. The class of BMAP's is closed under superposition. That is, the 
superposition ofn independent BMAP's with representations {Dk(i)}, 1 ~ i ~ n, is also a BMAP 
with 

Dk = Dk(l) $ ... $ Dk(n) , 

where "$" denotes the matrix Kronecker sum (see, e.g., Bellman [13] or Graham [19]). This 
formulation has been useful in establishing certain asymptotic results; see Abate, Choudhury, and 
Whitt [20] and Choudhury and Whitt [21]. These extend results for the models of the GI/M/l 
paradigm in Neuts [22]. This superposition property has recently been exploited by Choudhury, 
Lucantoni and Whitt [23]-[25] to study the effect of multiplexing bursty traffic streams in an ATM 
(asynchronous transfer mode) network. 

Other examples of incorporating qualitative features of a traffic stream into a model by using a 
BMAP are presented in Neuts [26]. Although the BMAP is a special case of a semi-Markov process 
(SM P), its relationship to continuous time Markov processes leads to far more tractable expressions 
than would be afforded by a general SMP. 

We also note that stationary BMAP's are dense in the family of all stationary point processes; see 
Asmussen and Koole [27]. This shows that the BMAP can represent a wide range of behavior although, 
from a practical point of view, the dimension of the matrices may be a limiting factor. A negative result 
for the applicability of MAP's is obtained in Olivier and Walrand [28] where it is shown that the output 
of an MMP P / M /1 queue is not a MAP unless the input is Poisson. This has implications for modeling 
networks of MAP/M/1 queues. 

Finally, we point out that there is a completely analogous discrete time version of the BMAP; see 
Blondia [29] [30], Blondia and Theimer [31], Blondia and Casals [32], Briem and Theimer [33], Herrmann 
[34], Ohta, et al., [35], Alfa and Neuts [36], Berger [37], Garcia and Casals [38] [39], Ramaswami and 
Latouche [40] [41], and Neuts [26] [42]. The discrete model is often referred to as the DMAP or DBMAP 
for the single and batch arrival versions, respectively. In this case Die is nonnegative for k ~ 0 and the 
sum of these matrices, D, is irreducible and stochastic. Many results related to the counting function, 
and moments of the number of arrivals in (O,t], etc., can be derived in an analogous fashion. These 
involve matrix geometric expressions instead of the matrix exponential expressions in the continuous 
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case. The results for the corresponding discrete time queue, however, are not as explicit as the ones for 
the continuous time BMAP/G/I queue. 

4. A Brief History of the BMAP and BMAP IG II Queue 

In this section, we provide a brief history of the BMAP/G/I queue. Since it is impractical to review the 
numerous papers written on special cases, we restrict attention to papers that are directly applicable 
to the model in its general formulation. We also recommend the annotated bibliography on phase-type 
distributions by Neuts [43]. There are several hundred papers cited there, many of which are related to 
special cases of the BMAP/G/I queue. 

The BMAP is subclass of stochastic point processes on the real line; see Daley and Vere-Jones [44]. 
A distinguishing feature of the BMAP is the underlying Markovian structure. An early point process 
exploiting Markov structure is the Wold process; see Wold [45] and p. 89 of Daley and Vere-Jones [44]. 
In a Wold process the successive interarrival times form a Markov chain. 

A process very similar to the MAP was introduced by Rudemo [46] where arrivals occur at a subset 
of transitions of a finite Markov process. In that model the probability of an arrival at a transition 
from i to j was either zero or one. A number of interesting quantities for that process were derived but 
it was not used as the arrival process to a queue. In the current context of matrix analytic solutions to 
queues, the earliest cases of the MAP and BMAP were constructed by Marcel Neuts, as follows. 

In the mid-seventies, Neuts generalized the Erlang and hyperexponential distributions to the class 
of phase type distributions which are distributions that can be represented as those of the time till 
absorption in finite state absorbing Markov processes with one absorbing state [15]. Using matrix 
formalism it was shown that many quantities of interest such as the distribution and density functions, 
moments, the random modification, etc., could be written in a compact form which bore a striking 
similarity to the ordinary exponential distribution. Neuts [57] then defined the corresponding renewal 
process of phase type for which the inter-renewal times have a phase type distribution. This then 
formed the basis for the construction of Neuts' versatile Markovian point process [3]; see Example (d) 
in §3.2 above. Although the notation was fairly complex (to distinguish between all of the different 
types of arrivals) the matrix formalism showed that the process was indeed a natural generalization of 
the ordinary Poisson process. 

During this same time, Neuts was developing a matrix-analytic methodology for analyzing complex 
queueing models which used purely probabilistic arguments to derive expressions and algorithms for 
computing the performance measures of interest; see, e.g., Neuts [1] [2]. One of the motivations for this 
effort was to provide an alternative solution technique which avoided the sometimes difficult problem of 
numerically searching for the roots of a (usually) transcendental equation. Neuts distinguished between 
two different paradigms: Markov chains of GIIM/I-type and M/G/I-type, respectively. Solutions to 
the models of GI/Mll-type tend to have a very elegant matrix geometric solution, which is a matrix 
generalization of the geometric distribution, (see Theorem 1.2.1 in Neuts [1]). The solution to the 
models of M/G/I type are usually more complicated. 

The key ingredient to the matrix analytic solution to models of M/G/l-type is the solution, G, of 
a matrix functional equation. In the general MIG/l paradigm, G is related to the fundamental period 
of the queue; see §2.2 of Neuts [2]. In the context of the BMAP/G/I queue, G is related to the busy 
period of the queue and indirectly, to the behavior of the arrival process during successive idle periods 
of the queue; see §5.2 below. The relationship between the matrix analytic approach and the traditional 
approach is that the roots in the traditional analysis are the eigenvalUes of the matrix G. It has been 
shown in some cases that when some roots are close or identical, thus causing problems in the root 
finding algorithms, the matrix G can still be easily computed. 

The matrix analytic methodology was applied by Ramaswami [4] to analyze the single server queue 
with general service times and Neuts' versatile Markovian point process (or N-process) as the arrival 
stream. Ramaswami derived expressions for the stationary queue length and waiting time distributions 
which generalized those for the M/G/l queue. In particular, a matrix generalization of the familiar 
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Pollaczek-Khinchin formula for the waiting time transform was obtained. The resulting algorithms were 
in principle computable, however, developing a program to solve the model in its full generality was 
a formidable task. The algorithms at that time required the explicit calculation of the parameters of 
the transition probability matrix of the Markov chain embedded at departures; see Lucantoni [7] for 
a full description of the algorithm needed to compute performance measures using the results in [4]. 
Subsequently, several other queues with this arrival process were analyzed. In particular, the N / G / 00, 

NIDlc, finite N/G/I models and the NIG/I departure process were analyzed by Ramaswami [59], 
Neuts [60], Blondia [61], and Saito [62], respectively. The special case of a Markov modulated Poisson 
process (MMPP) (see Example (c) in §3.l above) has been extensively studied; see e.g., Kuczura [47], 
Neuts [48] [49], Heffes [50], van Hoorn and Seelen [51], Heffes and Lucantoni [16], Burman and Smith 
[52], Rossiter [53], Ide [54], Baiocchi, et aI., [55], Asmussen [56], Zhu and Prabhu [58], etc. It is a 
doubly stochastic Poisson process or Cox process directed by a Markov chain; see p. 532 of Daley and 
Vere-Jones [44]. 

Using uniformization, Lucantoni and Ramaswami [5] developed an algorithm for computing the 
matrix G without having to compute the parameters of the transition matrix of the embedded Markov 
chain. This drastically reduced the computational effort required for computing the waiting time 
distributions and other performance measures and lead to feasible implementations of special cases 
of the NIG/l queue. In particular, using this result, Heffes and Lucantoni [16] outlined the general 
procedure for computing the waiting time in the MMPPIG/l queue. Also, a recursive scheme for the 
queue length distribution eliminating the previous Gauss-Seidel iterations was obtained by Ramaswami 
[89] for general M/G/l-type models. 

The Markovian arrival process (MAP) in its current formulation was introduced in Lucantoni, Meier­
Hellstern, and Neuts [6] as a generalization of the phase type renewal process and the Markov modulated 
Poisson process. In studying a single server queue with server vacations, it was convenient to have a 
simple process which contained both renewal and non-renewal processes as special cases. This process 
was then easily generalized to the BMAP by allowing batch arrivals [7]. It was immediately obvious 
that this process included many processes described in the applied probability literature and that the 
streamlined notation used for this process was a very natural generalization of that used for the Poisson 
process. In fact, all of the expressions derived for this process were direct matrix analogues of the 
simpler expressions for the Poisson process. It was also clear that the N -process was a special case of 
the BMAP but we had originally conjectured that the class of BMAP's was larger than the class of 
N-processes. Later we observed that these processes are in fact equivalent (see Example (d) in §3.2 
above). Once you realize they are ~he same, it is not difficult to show this equivalence, although our 
notes on this were never published. By the time the equivalence was observed, there were already a 
number of papers referring to the BMAP. We therefore decided to keep the new name to distinguish 
the simplified notation and the results using it from the original more complex notation. It should be 
noted that all of the results for the models involving the N -process mentioned above could be put into 
simpler forms using the new notation. 

The next major result in the solution to the BMAP/G/1 queue came about indirectly. Sengupta [63] 
showed that the functional equation arising in the solution to the GIIPHll queue could be written in 
a matrix exponential form. It was immediately clear that a similar situation occurred in the PHI Gil 
queue and, consequently, also for the BMAP/G/I queue for the matrix G. Neuts [64] proved the result 
for the MMPPIG/l queue and the result for the BMAPIG/l queue was derived simultaneously by 
Lucantoni [7] and Ramaswami [65]. Machihara [66] obtained the exponential form using a last-in-first­
out (LIFO) argument and Asmussen [67] later obtained it using ladder heights. Recently, simple proofs 
of this result along with other key relationships were obtained in Lucantoni and Neuts [10]. Some key 
quantities were obtained explicitly by exploiting certain commutative properties unobserved earlier. 
That resulted in major algorithmic simplifications in [7]. Ramaswami [65] also contains detailed results 
for the GI/BMAP/l queue where the BMAP is used as a model for the service process; that model 
is a substantial generalization of the GIl PHil queue. 

A goal in the development of the matrix analytic methods was to develop stable numerical algorithms 
for computing quantities of interest without resorting to numerical transform inversion. However, with 
the recent availability of improved transform inversion methods, it has become evident that numerical 
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transform inversion can contribute significantly to the numerical solution of these models. Indeed, 
numerical transform inversion can provide extremely accurate results (see, e.g., Abate and Whitt [68] 
and Choudhury, Lucantoni and Whitt [12]). Hence, a good strategy for solving the BMAP/G/1 queue 
is to combine the standard matrix-analytic techniques with transform inversion routines. We discuss 
this more in §6. 

Very recent results related to the BMAP / G /1 queue are the solutions for the transient queue length 
and waiting time distributions presented in Lucantoni, Choudhury and Whitt [8]; this involves two­
dimensional transform inversion. An algorithm for inverting multi-dimensional transforms is presented 
in Choudhury, Lucantoni and Whitt [12]. 

5. The BMAP/G/l Queue 

Consider a single-server queue with a BMAP arrival process specified by the sequence of matrices 
{Dk, k ~ O}. Let the service times be i.i.d. and independent ofthe arrival process; let the service time 
have an arbitrary distribution function H with Laplace-Stieltjes transform (LST) h and nth moment 
an. We assume that the mean a == al is finite and define the traffic intensity to be p == Aa. 

5.1. The Embedded Markov Renewal Process at Departures 

The embedded Markov renewal process at departure epochs is defined as follows. Define X(t) and 
J(t) to be the number of customers in the system (including in service, if any) and the phase of the 
arrival process at time t, respectively. Let Tk be the epoch of the kth departure from the queue, with 
TO = O. (We understand that the sample paths of these processes are right continuous and that there 
is a departure at TO = 0.) Then (X(-Tk), J('T"l:), 'T"l:+1 - Tk)' for k ~ 0, is a semi-Markov process on the 
state space {(i,j): i ~ 0, 1::; j ::; m} and is positive recurrent when p < 1; see, e.g., Ramaswami [4]. 

The matrices of mass functions, An(z), have elements defined by 

[An(Z)]ij = P (Given a departure at time 0 which left at least one customer in the system and the 
arrival process in phase i, the next departure occurs no later than time Z with the 
arrival process in phase j, and during that service there were n arrivals). 

We introduce the transform matrix 

(5) 

where Re(s) ~ 0 and Izi ::; 1. Then 

A(z,s) = 100 

e-aZeD(Z)ZdH(z) A(z,s) = 100 

e-($+>'->'Z)ZdH(z) 

- h(sl - D(z», = h(S+A-AZ) . (6) 

(BMAP/G/1) (M/G/1) 

The definition in (6) above is consistent with the usual definition of a scalar function evaluated at a 
matrix argument (see Theorem 2, p. 113 of Gantmacher, [69]). In particular, since h is analytic in 
the right half-plane, the above function is defined by using the matrix argument in the power series 
expansion of h. This is well defined as long as the spectrum of the matrix argument also lies in the 
right half plane, which can be shown to hold. Note that from (6) we see that A(z,s) is a power series in 
D(z) - sl. Thus, A(z, s) and D(z) commute. This important property is used repeatedly in the proofs. 
For later use, we define A(z) == A(z, 0). 
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5.2. The Busy Period 

Define GJ1,(k; x), k 2: 1, x 2: 0, as the probability that the first passage from the state (i + r, j) to 
the state (i,j'), i 2: 1, 1 ~ j, j' :$ m, r 2: 1, occurs in exactly k transitions and no later than time x, 
and that (i, j') is the first state visited in level i, where level i == {(i, 1), ... , (i, m)}. The matrix with 
elements GtJ,(k; x) is G[r)(k; x). 

The joint transform matrix, G( z, s), is defined by 

for !z!:$ 1, Re(s) 2: 0 . 

In the context of the BMAP/G/1 queue, G(z, s) is the two-dimensional transform of the number served 
during, and the duration of, the busy period (with the appropriate phase change information). It can 
be shown that the joint transform matrix governing the number served during and the duration of a 
busy period starting with r customers, is given by G(z, st (see, e.g., Neuts [70] [2]). 

It was shown in Lucantoni [7] and Ramaswami [65] that G(z,s) is the solution to 

G(z, s) = z 100 

e-U'eD[GCz"»)ZdH(x) G(z, s) = z 100 

e-C,+>.->..G(Z"))ZdH(x) 

zh(sI - D[G(z, s)]), = zh(s + A - AG(Z, s» , (7) 
-

(BMAP/G/1) (M/G/1) 

for !zl :$ 1, Re(s) 2: 0, where D[G(z,s)] == E:=oDkG(Z,S)k. Equation (7) is the matrix analogue of 
Takacs' equation for the busy period in the ordinary M/G/1 queue [71]. Equation (7) with z = 1 is 
the matrix analogue of the Kendall functional equation, (see (59) in Kendall [72], and the discussion 
of I. J. Good on p. 182 there). Note from (7) that G(z,s) commutes with D[G(z,s)]. The exponential 
form of the matrix G(z, s) results in substantial reduction in the computational complexity of the 
implementation of the matrix analytic solution (see [7]). 

Next define the matrices G(s) == G(l, s) and G == G(O) and note that G satisfies 

G = 100 

eD[GJZdH(x) . (8) 

The matrix G is stochastic when p:$ 1 (see, e.g., Theorem 2.3.1 in Neuts [2]) and is the key ingredient 
in the solution of the stationary version of this system .. Efficient algorithms for computing this matrix 
are discussed in §6. For p ~ 1, the invariant probability vector g, of the positive stochastic matrix G, 
satisfies 

gG=g, ge= 1. (9) 

The matrix D[G] == D[G(l, 0)] has a nice probabilistic interpretation which was originally pointed 
out in Lucantoni, Meier-Hellstern and Neuts [6]. Since G is strictly positive, it follows that the oft"­
diagonal entries of D[G] are nonnegative. When the queue is stable, G is stochastic so that D[G]e = 0; 
that is, D[G] is the infinitesimal generator of a finite-state, irreducible Markov process. From the 
structure of the matrix we see that starting in some state i, there will be an exponential sojourn time 
with rate I(Do)ii!. Then there will either be a transition to state j, j =j; i, with rate (Do)'j (i.e., without 
an arrival), or a transition to state j with rate (E~=l DkGk)ij. That is, a batch of size k arrives followed 
by k busy periods which end in phase j, corresponding to a phase change from i to j in this process. It 
is clear that this process is the phase of the arrival process observed only during idle periods, i.e., the 
time during the busy periods are excised. In the unstable case, i.e., p> 1, G is strictly substochastic so 
that D[G] is a stable matrix. In other words, in this case the total amount of idle time observed before 
the last busy period (that never ends) is phase type (see, e.g., [1]) with representation (a, D[G]), where 
a is the vector of initial phase probabilities at time 0 Note that Equation (8) implies that g is also 
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the stationary vector of the matrix D[G] and therefore its ph component is the stationary probability 
that the arrival process is in state j given that the server is idle. This has major implications in the 
computational algorithm. 

5.3. The Stationary Distributions 

For proofs of the results in this section, see Ramaswami [4], Lucantoni [7], and Lucantoni and Neuts 
[9]. Exponential asymptotics for the steady-state distributions below appear in Abate, Choudhury and 
Whitt [20], Choudhury and Whitt [21], and Baiocchi [73]; we will not discuss them here. 

5.3.1. The Queue Length Distribution at Departures 

Let 

(recalling that the sample paths are assumed to be right continuous), and define the vectors Xi 

(XiI, ... , Xim), for i ~ O. Then the vector generating function X(z) == 2.::0 Xizi, is given by 

X(z) = (1- p».-lgD(z)A(z)[zI - A(z)]-l, 

(BMAP/G/1) 

X(z) = (1 - p)(z - l)A(z) , 
z - A(z) 

(M/G/1) 

(10) 

for Izl ~ 1. Note that (z - 1) in the numerator for M/G/1 plays the role of ..\-lgD(z) for BMAP/G/1; 
see Equation (3). The general form of the generating function X(z) in (10) was proved in Ramaswami 
[4], however, the simplicity ofthe constant vector (1- p)g went unnoticed until Lucantoni [7]. 

5.3.2. The Queue Length Distribution at an Arbitrary Time 

We first consider the continuous parameter process ([X(t), J(t)], t ~ O}. The time-dependent joint 
distribution of the queue length and the arrival phase is given by the conditional probabilities 

ii~~(t) = P(X(t) = i, J(t) = k I X(O) = io, J(O) = j, TO = 0) , (11) 

for io, i ~ 0, 1 ::; j, k ::; m, t ~ O. We can show that the limits 

Yik == tlim 1i~~(t), for i ~ 0, 1 ~ k ~ m , 
_00 

exist and are independent of io and j. For i ~ 0 let Yi = (Yil, Yi2, ... , Yim) and define the vector 
generating function, Y(z) = 2.::0 Yizi. Then 

Y(z) = (1 - p)g(z - l)A(z)[zI - A(z)]-l , Y(z) = (1 - ~)~ ~~jA(Z) , 
(12) 

(BMAP/G/1) (M/G/1) 

for Izl ~ 1. Note that yo = (1 - p)g which is consistent with the probabilistic interpretation of g as 
the stationary phase probabilities given that the system is empty (see §5.2). Although (12) shows the 
similarity between solutions to the BMAP/G/1 and M/G/1 queues, a more convenient representation 
ofY(z) in the BMAP/G/1 queue is 

Y(z)D(z) = ..\(z - l)X(z). 

Therefore, numerically inverting X(z) and Y(z) can be done simultaneously. Alternatively, a recursion 
for Yi in terms of Xi can be derived by equating coefficients of zi (see (38) in Lucantoni [7]; note that 
this recursion is much simpler than (3.3.16) in Ramaswami [4]). 
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5.3.3. The Queue Length Distribution at an Arrival 

Let L(z) be the generating function of the number of customers in the system at an arbitrary arrival 
(not including the customers in the arriving batch). Then 

for Izl ::; 1. 

L(z) 

L(z) 

= (1 - p)(7r Doe)-lg(z - I)A(z)[zI - A(z)]-l Doe, 

= (1- p)(z - l)A(z) (M/G/l) 
z - A(z) 

5.3.4. The Virtual Waiting Time Distribution 

(BMAP/G/1) 
(13) 

In this section, we state results for the virtual waiting time or workload distribution. First, we define 
the following quantities Wv(:z:) = (WV,l(X), ... , WV,m(:Z:» , where WVJ(x) is the joint probability that 
at an arbitrary time the arrival process is in phase j and that a virtual customer who arrives at that 
time waits at most a time x before entering service. The Laplace-Stieltjes transform of W v (x) is 
Wv(s) = fooo e-,:rdWv(x). Then 

WV(s) = s(l- p)g[sI + D(h(s))]-l, Wv(O) = 1r, 

(BMAP/G/l) 

s(l- p) 
Wv(s) = s _ >. + >'h(s) , 

(M/G/l) 
(14) 

for Re( s) ~ O. The waiting time transform in (14) is a matrix generalization of the Pollaczek-Khinchin 
formula for the M/G/1 queue and was obtained using Markov renewal arguments in Ramaswami [4] 
along with the associated system of Volterra integral equations. An alternative derivation was obtained 
by Ide [54]. The simplified expression for the constant vector (1 - p)g is due to Lucantoni [7]. 

5.3.5. The Waiting Time Distribution of the First Customer in a Batch 

Let WB(S) be the LST of the delay of the first customer in a batch. Then 

WB(S) = s(1 - p)(7r Doe)-lg[sI + D(h(s))]-l Doe, 

(BMAP/G/l) 

for Re(s) ~ O. 

s(1 - p) 
WB(S) = S _ >. + >'h(s) , 

(MX /G/1) 

5.3.6. The Waiting Time Distribution of an Arbitrary Customer 

Let 
W A(:Z:) = (WA,l(:Z:),"" WA,m(X», 

(15) 

where W A,j (x) is the joint probability that the arrival process is in phase j and the delay of an arbitrary 
arrival is at most x, and let W A(S) be the LST of W A(X). Note that this delay includes the delay due 
to customers in the arriving batch who are ahead of the arbitrarily chosen customer. Then 

WACS) 
1 

WACS) W(s) 1 - p(h(s» = >.(1- h(s» W(s)[D - D(h(s»] = p(l - h(s» 

1 s(W(s) - (1 - p» (16) 
= >'(h(s) _1)[W(s)(sI + D) - s(1 - p)g], = >'(h(s) - 1) 

(BMAP/G/l) (MX /G/l) 
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for Re(s) ~ 0, where, for the MX /G/1 queue, p(z) is the probability generating function of the batch 
size distribution and p is the mean batch size. Note that the first expression (for the MX /Gl1 queue) in 
(16) is Equation (2) in Burke [74]. This shows that the total delay is factored into the delay of the first 
customer in a batch plus the delay due to customers in the batch ahead of the tagged customer. That 
number of customers is distributed as the forward recurrence time in a discrete-time renewal process 
where the inter-renewal times are distributed as the batch size distribution. The second expressions 
in (16) are more convenient for deriving moment formulas since they do not involve the batch size 
distribution; see Lucantoni and Neuts [9]. 

5.4. The Transient Distributions 

For proofs of the results in this section see Lucantoni, Choudhury and Whitt [8]. The MIG/1 counter­
parts appear in Takacs [71]. 

5.4.1. The Emptiness Functions 

In this section we characterize the probability that the system is empty at time t. The key role of this 
function for general systems was demonstrated by BeneS [75). Let Vet) be the amount of work in the 
system at time tj for 1 ~ i,j ~ m, x ~ 0 and t ~ 0, let 

P;~(t) = P(V(t) = 0, J(t) = j I V(O) = x , J(O) = i ), (17) 

and let the m x m matrix P%o(t) have (i, j)-entry P;~(t). The unconditional emptiness function, starting 
with initial workload distributed according to cdf F, defined by 

poet) == 100 

P%o(t)dF(x), 

has Laplace transform po(s) == foOO 
e-6t Po (t)dt given by 

po(s) = f(s1 - D[G(s)])(sl - D[G(s)])-l, 

(BMAP/G/1) 

for t ~ 0 , 

( ) 
_ I( s + A - AG( s» 

Po s - s + A - AG( s) , 

(M/G/1) 

(18) 

(19) 

for Re(s) > 0, where I is the LST of F. The expression for M/G/1 in (19) is Equation (9) on p. 52 of 
Takacs [71]. Since the components of the vector G(s)e are Laplace-Stieltjes transforms and IG(s)el < 1, 
for Re(s) > 0, the eigenvalues of D[G(s)] are in the left half-plane. Therefore, for Re(s) > 0, the 
eigenvalues of sl - D[G(s)] are in the right half-plane and the inverse appearing in (19) is well defined. 

We can show from (19) that 

() {
(I - p )eg for p ~ 1 , 

lim Po t = 
t-oo 0 for p > 1 , 

as expected. 

5.4.2. The Transient Workload 

(20) 

In this section we present the transform of the workload (work in the system in uncompleted service 
time) at time t. Let W(t,x) be the matrix whose (i,j)th element is the probability that the work in 
the system is less than or equal to x and the phase is j at time t, given that at time 0 the phase was i 
and the initial workload (including the customer in service, if any) was distributed according to F; let 
the Laplace-Stieltjes transform of F be I. Let w( t, s) and w( e, s) be the transforms 

wet,s) = 100 

e-6 %d%W(t,x) and wee,s) = 100 

e-(tw(t,s)dt. 
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Then the matrix w({, s) is given by 

w({, s) = (/(s)1 - sPo({))[eI - sl - D(h(s))]-l, 

(BMAP/G/l) 

and the matrix w(t, s) is given by 

_(~ ) _ /(s) - sPo({) 
w .. ,S - 'h( ) , {-s+>.- .... s 

(MIG/I) 

w(t, s) = (/(S)1 - s lot po(u)e-[.I+D(h(,))]UdU) e[Il+D(h(.))]t, 

(BMAP/G/l) 

w(t, s) = (I(S) - s lot po(u)e-(I->.+Ah('»UdU) e(I->.+>.h(I))t, 

(MIG/l) 

(21) 

(22) 

(23) 

for Re(s) 2: 0, Re({) > 0, where Po(u) and po({) are given in (18) and (19), respectively. The equations 
in (21) are formulas (28) in Lucantoni, Choudhury and Whitt [8] and (15) on p. 53 of Takacs [71], 
respectively. Equation (23) for the M/G/l queue is given on pg. 53 of Takacs [71]. 

Although we are able to express the transform of the delay explicitly in terms of t in (22), we note 
that this expression is not trivial to evaluate numerically. It involves numerically inverting a Laplace 
transform where the evaluation of the transform at a value of s requires the numerical integration of the 
emptiness function times an exponential matrix. The values of the emptiness function are themselves 
obtained by inverting a Laplace transform. The corresponding expression in (23) for the ordinary 
M/G/l queue also suffers from the same difficulty. This may partly explain why the known formulas 
for that case have not been widely used for practical computations. 

In contrast, however, the transform expressions in (21) are relatively simple to evaluate, so that 
with an inversion algorithm for 2-dimensional Laplace transforms, we have a practical method for 
obtaining numerical results. An efficient and accurate multi-dimensional transform inversion algorithm 
is presented in Choudhury, Lucantoni and Whitt [12] and is briefly discussed in §6. 

It can be shown using Roucbe's theorem that for each s, Re(s) 2: 0, the determinant of the matrix 
U - sl - D(h(s» appearing in the inverse in (21) has exactly m roots in the region Re({) > 0. (For 
similar arguments see Cinlar [76] and Neuts [77] [78].) Since w is a Laplace-Stieltjes transform and 
is therefore analytic in the interior of the above region, these pairs of ({, s) must also be zeros of the 
first matrix on the right in (21). That is, they are removable singularities. The classical approach to 
this type of problem would then assume that the roots are distinct to obtain m independent linear 
equations for each row of the unknown matrix PO({). In practice, the roots may not be distinct, or if 
they are close, there may be numerical difficulties in locating these roots. These technical problems are 
circumvented in the present case since we have an explicit expression for po({) (see Equation 19). 

We see from (21) that the transform of the limiting distribution of the workload is given by 

( ) = 1. ~ -(~ ) _ { s(1 - p)eg[s1 + D(h(s))]-l, 
W S _ 1m .. w ... , s - ° {-a , 

which agrees with (14). 

5.4.3. The Transient Queue Length 

for p $ 1 , 
for p> 1 , 

In this section, we present the transient queue length distribution at ti~e t given an initial number of 
customers present immediately after a departure at time t = 0. Let Ylo~(t) be as defined in (11) and 

let Yioi(t) have (j, k)-entry Y/~(t). Recall that TO = ° means that there is a departure at time o. Let 
o . 

Yioi(S) be the Laplace transform of Yioi(t). Then Yioo(s) = G(s)'o(s1 - D[G(S)])-l and the probability 
generating function of the queue length at time t, defined by Yio(Z, s) == 2::0 Yioi(S)Zi, is given by 

Yio(Z, s) = [zio+l(I - A(z, s»(s1 - D(z»-l 
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+(z -l)G(s)iO(sl - D[G(S)])-l A(z,s)][zl - A(Z,S)]-l , 

(BMAP/G/1) 

1 (ZiO+l(l-A(Z,s» + (Z-I)G(S)iOA(Z,S») 
z-A(z,s) S+A-AZ S+A-AG(S) 

(M/G/I) 

for Re(s) > 0, Izl < I and A(z, s) is given in (6). 

Let the Laplace transform of the complementary queue length distribution be defined by 

(24) 

(25) 

with the corresponding generating function Yi'o (z, s) == 2:::0 Yioi(S)zi . Then since Yio(l, s) = (sl _D)-I, 
the transform of the complementary queue length distribution, Y:o(z, s), is given by 

Y: (z, s) = -1 I [(sl - D)-l - Yio(Z, s)] , 
o -z 

(BMAP/G/I) 

for Re(s) > 0 and Izl < 1. 

Yio(z, s) = 1 ~ Z [~- Yio(Z, s)] , 

(M/G/I) 

5.4.4. Transient Results at Arrivals and Departures 

(26) 

Further transient results for the BMAP/G/l queue have recently been derived and will be reported in 
Lucantoni [79]. In particular, we derived explicit expressions for the transform of the queue length at 
the n-th departure, assuming a departure at time t = 0, and the workload at the n-th arrival (keeping 
track of the appropriate phase changes). The departure process is characterized by the double transform 
of the probability that the n-th departure occurs at time less than or equal to time z (similar to that 
derived by Saito [62]). This leads to an explicit expression for the LST of the expected number of 
departures up to time t. All of these expressions are direct matrix analogues of the corresponding 
M/G/I results in Takacs [71]. 

6. Numerical Algorithms 

It is evident from the results in §5 that the transforms for the stationary queue length and delay distri­
butions are completely specified in terms of the vector g, the stationary probability vector of the matrix 
G. We discuss below several algorithms for computing this matrix. The transient distributions require 
evaluation of the matrix G(s) for complex s. Computing the queue length distributions themselves can 
be done either by transform inversion or by other probabilistic algorithms. In the former case, tYj>ically 
the matrix A(z) needs to be evaluated for complex z. In the latter case, the matrices An == An(oo), 
n ~ 0, need to be evaluated. Both of these require additional overhead. Detailed comparisons of these 
methods have not yet been performed, however, it is our opinion that a full package for analyzing the 
BMAP/G/1 queue should include several alternatives for computing the desired results. Every numeri­
cal algorithm has limitations either in accuracy or in processing requirements and storage so it is useful 
to compute the results several different ways in order to check for consistency. 

Due to space limitations, we do not present the explicit algorithms for computing the quantities of 
interest but instead, refer to appropriate references for the details and clear demonstrations of imple­
mentability. 
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6.1. Computing the Matrices G, G{s), and A{z) 

The matrix G is the unique solution, in the class of substochastic matrices, to the matrix equation 
(8). It has been shown (see Neuts [2]) that Equation (8) can be solved by successive substitutions. 
Although early proofs of this result required an initial iterate of Go = 0, this is not a good starting 
solution for computations. It has been observed that convergence is slower with this initial solution as 
the traffic intensity, p, increases. By starting with Go equal to a stochastic matrix, each iterate will 
itself be stochastic and we have observed that in many cases the speed of convergence is insensitive to 
p. An efficient technique for evaluating the right hand side of Equation (8) based on uniformization 
is presented in Lucantoni [7]. This requires the computation of a scalar sequence hn, n 2: O} where 
'Yn = fooo(e-eZ(Oz)njn!)dH(z), and 0 = maJCi(-(Do)ii). If H is phase type then the 'Yn'S can be 
computed recursively without any numerical integrations; see Theorem 2.2.8 in Neuts [1]. If H is 
arbitrary then the 'Yn's can be computed by numerically inverting the probability generating function 
h(O - Oz); we have had much success with the transform inversion algorithm presented in Abate and 
Whitt [80] (see Choudhury, Lucantoni and Whitt [81]). 

If His Coxian (i.e., H has a rational Laplace-Stieltjes transform) then there is an efficient algorithm 
for evaluating the integral on the right hand side of (8) which is presented below (see Lucantoni, 
Choudhury and Whitt [8]). This algorithm is also directly applicable to computing A(z) and G(s), for 
complex z and s, from Equations (6) and (7), respectively. 

Let 

(27) 

where M and M' are, in general, complex matrices. If H has a Coxian distribution with the Laplace­
Stieltjes transform 

(28) 

then (27) may be evaluated as 

(29) 

Note that (29) only requires the computation of two matrix polynomials and one matrix inversion. 
Often the matrix polynomials may be computed with just a few matrix multiplications. As an example, 
note that when H is an Erlang distribution of order n, i.e., En, with mean p., then h(s) = (1 + J.Lsjn)-n 
and (27) is evaluated as 

M' = (I + ;M) -n . (30) 

If n = 2m , for an integer m, then only m matrix multiplications are needed. For example, evaluating (27) 
when H is E 1024 requires one matrix inverse and ten matrix multiplications. This example also shows 
that we can approach very close to the practically important, non-Coxian, deterministic distribution 
with relatively few matrix operations. (Of course, the results in this paper apply directly to general 
service-time distributions, but computing integrals like (27) even in the deterministic case is more 
computationally intensive than in the En case, for large n. Moreover, it is harder to get high accuracy 
in the transform inversion algorithms for deterministic service due to discontinuities in the derivative 
of the waiting time cdf in that case). 

Application of the inversion formulas in Choudhury, Lucantoni and Whitt [12] to the transient 
workload (21) and the transient queue length (24) respectively, requires numerous evaluations of the 
matrix G(s) for complex s. It was first proved in Lucantoni [82] that G(s) can be computed by 
successively iterating in (7) starting with Go(s) == O. That proof exploited the fact (which apparently 
was not well known even for the MIGI1 queue) that the successive iterates were in fact Laplace-Stieltjes 
transforms of first passage times along restricted sets of sample paths. (Similar arguments were later 
used in Latouche [83] to study various iterative algorithms in the general matrix paradigms.) Neuts [2] 
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later proved convergence of the iterations using arguments from functional analysis. It was also shown 
in Choudhury, Lucantoni, and Whitt [11] that starting the iterations with Go(s) == 0 and Go(s) == G, 
respectively, produce the sequences of iterates, !1:(s) and Gk(S) where the matrices !1:(s) and Gk(S) are 
themselves Laplace-Stieltjes transforms of distribution functions L(x) and Fk(X). These distributions 
bound the true distribution in the sense that 

£(X):5 8(x):5 Fk(X) , 

for all x, where 8(x) is the distribution function with LST G(s). (This extends results for the MIGll 
queue in Abate and Whitt [84].) Thus, stopping the iteration at any point will give useful bounds 
on the true distributions. We usually carry out the computations until the bounds are within 10-12. 

It is clear that the numerous evaluations of G(s) may constitute a significant component of the total 
computational cost of evaluating the transient distributions; see §6.6. In the examples we have run so 
far, in order to get successive iterates to within 10-13, the number of iterations has ranged from several 
tens to a few hundreds. 

6.2. Computing Moments and Asymptotics of the Distributions 

Explicit formulas for the moments of the distributions discussed in this paper can be derived from 
the corresponding transform expressions. The first two moments for the number served during and the 
duration of the busy period in the general MIG/1 paradigm were first derived in Neuts [70] [85]. Simpler 
expressions in the case ofthe BMAPIG/1 queue were derived in Choudhury, Lucantoni and Whitt [11]. 
The explosion in complexity of the expressions precludes explicit formulas for higher moments of the 
busy period. 

A recursive algorithm for computing the moments of the queue length distribution is given in 3.3.11-
13 of Neuts [2]. These require the evaluation of successive derivatives of A(z) at z = 1. Recursive 
expressions for the moments of the virtual and actual delay distributions are given in Lucantoni and 
Neuts [9]. (We note that these correct several typos in the first two moments given in Equations (47) 
and (48) of Lucantoni [7]). These recursive expressions are efficient for the low order moments but lose 
precision if higher moments are required. 

A recent algorithm by Choudhury and Lucantoni [86) has been found to be very effective in comput­
ing a large number of moments from a probability transform. Also, the high order moments can be used 
to compute the exact asymptotic parameters of the distributions; see [86] and Choudhury, Lucantoni 
and Whitt [87]. The asymptotic parameters can be used in approximating high percentiles or as a 
stopping criterion for the numerical inversion of the distributions; see [87] for more details. We also 
note that an alternative technique for computing the asymptotic parameters for the delay and queue 
length distributions is given in Abate, Choudhury and Whitt [20]. 

6.3. Numerical transform inversion 

The distributions presented in this paper can be computed by numerically inverting the corresponding 
transforms. We recommend first computing the asymptotic parameters as discussed above to be used 
as a stopping criteria for an inversion algorithm such as the one presented in Abate and Whitt [68) for 
the inversion; see [8], [11], [12], [81] and [88) for applications and discussions of this. 

6.4. Computing the Stationary Queue Length Densities 

We discuss two procedures for computing the queue length density. The first is a recursive scheme due 
to Ramaswami [89) and is a generalization of a device by P. J. Burke that eliminates the loss of precision 
in computing the queue length density in the M/G/1 queue; see p. 186 of Neuts [90). This algorithm 
requires the explicit computation and storage of the matrices An, n ~ O. An efficient algorithm for 
computing these is given in Lucantoni [7). We have implemented Ramaswami's algorithm and generally 
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find it very effective. However, cases where it loses precision for small tail probabilities have been 
reported by Wang and Silvester [91] [92]. One possibility for this loss of significance is that for very 
bursty arrival processes it may not be possible to compute a sufficient number of An matrices (with 
enough precision) in order to compute the queue length density to a high degree of accuracy. These 
problems were avoided by first computing the asymptotic tail by the methods mentioned in §6.2. 

The second technique is to invert the transform directly using the algorithms mentioned in §6.3. 
These do not require the computation of the sequence {An} but instead need the evaluation of A(z) 
for several complex values of z, as discussed in §6.1. The inversion is most effectively done by first 
computing the asymptotic parameters discussed in §6.2 and using these as a stopping rule for the direct 
inversion of the queue length. 

6.S. Computing Waiting Time Distributions 

The waiting time distributions given by the transforms (14)-(16) can be computed by numerically 
solving the associated Volterra integral equations (see, e.g., Neuts [93] [2]) or by numerically inverting 
the transforms directly (see e.g., Abate and Whitt [68] and Choudhury, Lucantoni and Whitt [81]). 

6.6. Computing Transient Distributions 

We compute the transient queue length and waiting time distributions by numerically inverting the 
double transforms in (24) and (21), respectively, using new multi-dimensional transform inversion al­
gorithms presented in Choudhury, Lucantoni and Whitt [12]. Note that G(s) needs to be computed a 
large number of times (particularly if the inversion is needed for several values of queue length/waiting 
time and for several time points). However, upon closer examination of the inversion algorithms it is 
apparent that not all of the evaluations of G(s) are at distinct s values. For a particular example in 
[8], G(s) is needed 250,000 times but only at 500 distinct s values. By precomputing and storing these 
matrices for later use, the computational burden is greatly reduced. In fact, the computational effort 
for evaluating GO becomes an insignificant fraction of the overall computation. This allows feasible 
numerical computations for more complicated models such as the BMAPt/Gt/1 discussed in §8 below. 

7. Numerical Results 

The computability of the results in this paper has been demonstrated recently in Choudhury, Lucantoni 
and Whitt [23] [8] and already put to practical uses. For example, in [23] we study the effectiveness 
of recently proposed "effective bandwidth" measures to be used for call admission algorithms in ATM 
networks. In particular, we compute the stationary delay and queue length distributions for a superpo­
sition of up to sixty identical bursty sources (modeled as MMPP's). We found that effective bandwidth 
could lead to extremely conservative or extremely optimistic predictions depending on whether the 
individual streams were more or less bursty then Poisson, respectively. See [23] for more discussion of 
this and for references on effective bandwidth. 

The transient delay and queue length distributions are computed in [8]. There we consider a BMAP 
corresponding to the superposition of four i.i.d. MMPP's, each having two environment states, and a 
gamma service-time distribution. .Ai should be anticipated, these examples show, that the transient 
distributions can be very different from the steady-state distributions. We also compute the transient 
distributions when p > 1. This has applications to studying overloads in situations that cannot be 
studied by stationary models. 
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8. Current and Future Work 

The MAP/G/1 queue with server vacations was analyzed in Lucantoni, Meier-Hellstern and Neuts 
[6], where it was shown that known factorization theorems in the M/G/1 queue with vacations carry 
over to the MAP case. Several new factorizations were also derived there. It is easy to generalize the 
expressions in [6] to the BMAP/G/1 queue with server vacations. The BMAP/G/1 queue with a more 
general vacation discipline than in [6] is analyzed in Ferrandiz [95]. 

All of the results for the BMAP/G/1 queue generalize to the BMAP/SM/1 queue; that is a single 
server queue with a BMAP arrival process where successive service times form a semi-Markov process; 
see Lucantoni and Neuts [95] for the analogous stationary results. 

Recently, results have been obtained for the MMPP/G/1 queue where the service time depends 
on the phase at arrivals (Asmussen [56], Zhu and Prabhu [58] [100]) and also for the corresponding 
BMAP/G/1 queue in He [96] and Takine and Hasegawa [97]. These papers allow a superposition of 
traffic streams each with its own service time distribution. Note that the latter paper also contains 
the transform expression for the transient workload and an application to priority queues with BMAP 
arrivals. 

Application of the transient results in [8] to the Mt/Gt/1 and BMAPtiGt/1 queues where the arrival 
processes and service time distributions are fixed on nonoverlapping intervals is currently in progress; see 
Choudhury, Lucantoni and Whitt [98] [99]. Here a novel use of the double transform inversion routines 
reduces the enormous amount of information that needs to be carried along at successive intervals. 

From this tutorial it should be clear that successful algorithms for the BMAP/G/1 queue have 
benefitted from several different approaches. The combination of matrix analytic methods, transform 
inversion, embedded Markov chain analysis, techniques based on workload processes, etc., has yielded 
the possibility of carrying the algorithmic approach to these classes of queues to much greater levels 
than imagined possible. 
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