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BLOOD FLOW IN THE LUNG*? 

R. COLLINS and J. A. MACCARIO 

University of Compitgne. BP 233. 60206 Compiigne, France 

Abstract - Pulmonary hemodynamics is studied in terms of the quasi one-dimensional unsteady nonlinear 
fluid flow equations which are applied to the 40-odd generations of branched arterial, capillary and venous 
distensible vessel segments making up the four lobes of the complete lung. An idealized pressure-area “tube 
law” is introduced which provides for varying degrees of vessel collapse. The model predictions agree well 
with experimental measurements of flow transmission as a function of pulsatile frequency. Pulmonary 
response is represented schematically in terms of an influence diagram. Pressure pulses are shown to increase 
in amplitude in the early arterial segments, with the greatest drop occurring across the capillary bed. 

1. INTRODUCTION 

The lung constitutes a highly complex and self- 
regulating system for oxygenating man’s blood and 
removing its waste materials. It is at the alveolar level 
that the respiratory and circulatory functions interact 
and the important exchange processes occur. Much 
research has been done on both aspects of pulmonary 
function by physiologists, medical clinicians and ap- 
plied mathematicians. It is evident from this work that 
mechanical principles play a very important role. 
Neural control is nonetheless present, although less 
prominent than in the systemic circulation. Its direct 
effect may enter, however, through a readjustment of 
the mechanical variables of the system. 

It is particularly the circulatory aspects of pul- 
monary function which are of concern in the present 
investigation. We address ourselves here to the general 
question of how the lung might adapt to external 
influences, caused for example, by cardiac dysfunction 
(mitral stenosis, left-to-right shunts), vascular obstruc- 
tions (emboli transported to the lungs from the 
systemic veins), changes in altitude (alterations in 
alveolar pressure in mountain-climbers and deep-sea 
divers) and physical work and exercise. A good 
quantitative understanding of pulmonary response is 
still lacking to this date, although a number of very 
imaginative experiments have been undertaken to 
document this behaviour. Less work has been done on 
the unification of this data in the form of a global 
quantitative model of the complete circulatory system 
of the lung on the basis of classical mechanical 
principles. 

Some may be of the opinion that such an undertak- 
ing is premature. tndeed, very little detailed and 
utilizable information is available for the material 
properties on which the results of such an analysis 
must depend. Direct measurements of in viva dimen- 
sions and mechanical properties of the intricate 
branching network have been accomplished only for 
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the main pulmonary artery and its early branches. 
Beyond, this point, the calibre of the vessels rapidly 
diminishes. Nor can the vascular beds be laid out in 
thin sheets so that their in-uiuo behaviour may be 
examined dynamically under a microscope. The ana- 
tomy of the rabbit’s ear may readily lend itself to such 
experimentation, but the lung is highly three- 
dimensional in structure. 

Partial circumvention of this difficulty is possible by 
injection into the blood-stream of a substance which is 
at first convected and then solidifies within the blood 
vessels, hopefully without changing their dimensions. 
Measurements are then made directly on the cast of the 
pulmonary tree of the sacrificed animal. 

Similar difficulties apply to measurements of trans- 
mural pressure beyond the first and last few gene- 
rations. Reliance on venous “wedge” pressures, ob- 
tained by occluding the vessel to the point of arresting 
the flow, is less than satisfying, for some doubt always 
remains about their correct interpretation. Flow 
measurements in the interior of the lung have been 
carried out recording the radiation from gaseous 
radioactive tracers, such as xenon-133, which may be 
injected into the blood-stream and detected by an 
external counter. One thus obtains an integrated 
measure across a slice of the lung. 

In spite of this somewhat pessimistic picture, useful 
estimates have been made in the intermediate regions 
of the lung, which serve as a starting point for a 
mathematical analysis. One may cite the now classical 
studies of lung morphology by Weibel(1963) and the 
more recent findings of Cummings rr al. (1969). 
However the results of Wiener et ul. (1966) offer the 
considerable advantage of accompanying their esti- 
mations of vessel dimensions by values of the cor- 
responding vessel compliances. 

Useful measurements of pressure and blood flow in 
different regions of the lung under varying conditions 
of flow pulsatility have been published by Attinger 
(1963), West et al. (1964) and Maloney er al. (1968). 

Mathematical modelling of the pulmonary circu- 
lation has been attempted at various levels of detail. 
Global response has been simulated by a great many 
investigators (for example, Rideout and Katra, 1969) 
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on the basis of the analogy of the linearized equations 
of motion with an electrical transmission line. The 
notions of resistance or impedance connected with this 
simplified formulation have found great popularity 
amongst physiologists who find such physically in- 
tuitiveconcepts useful in their quest for an understand- 
ing of the fundamental underlying mechanisms of 
pulmonary behaviour. One must nonetheless proceed 
with caution in interpreting the results of such for- 
mulations which often do not deal adequately with 
important intrinsically nonlinear characteristics such 
as wave steepening and hence the growth of pressure 
amplitudes observed along the arterial segments of the 
circulatory system. 

A more realistic approach requires retaining the 
important nonlinear inertial terms in the fluid equa- 
tions of motion. The resulting system is of second 
order, and hyperbolic in character, provided that the 
transmural pressure is considered to be a function of 
local cross-sectional area only. It may be solved 
numerically by finite differences or by the method of 
characteristics. The latter technique has been em- 
ployed by Anliker et al. (1971) for the systemic 
circulation. Since it is difficult to include the complete 
systemic circulatory system in such calculations, pro- 
vision must be made for outflows from the model 
system, by means of continuous or distributed sinks. A 
similar procedure has been adopted here, with the 
added advantage that the complete pulmonary ana- 
tomy may be inciuded in the model, thus obviating the 
need for such pre-specified sink terms. 

It has long been recognized that distensible blood 
vessels may collapse, at least partially, under physi- 
ological flow conditions. Such vessels become appro- 
ximately elliptical in cross-section, the ratio of major- 
to-minor axes ranging in dogs from 1.25 in the main 
pulmonary artery to 1.91 within the next five arterial 
generations, These measurements of Attinger (1963) 
correspond to equivalent cross-sectional area ratios of 
0.72-0.82 between elliptic and circular configurations. 
Attinger concludes that these ratios at the major 
branch points are considerably less than those postu- 
lated for optimal energy transfer. One is thus led to 
surmise that collapsible vessels, which disadvantage 
the efficient transmission of energy, may be playing 
another role, for which that is the price. 

The suggestion that the purpose of collapsible 
pulmonary capillaries may be to control the flow, as a 
‘Starling” resistor, was first introduced by Permutt et 
al. (1962). They regarded such collapsible vessels, 
subjected to upstream arterial, downstream venous 
and surrounding alveolar pressures, as sensitive sluice- 
gates which open or close in response to these three 
forces. West et al. (1964) have extended this idea to 
define three control-zones in the lung: 

upper lung: zone 1: arterial < alveolar > venous 
pressures - totally collapsed 
intermediate lung: zone 2: arterial > alveolar > 
venous pressures - collapsed at distal end 

lower lung: zone 3: arterial > venous > alveolar 
pressures - fully open. 

At the bottom of the lung (zone 3) where the 
pulmonary vessels are completely open, the flow rate 
depends classically upon the arterial and venous 
pressure difference. However the situation is rather 
novel in the intermediate zone 2, where the flow rate is 
controlled by the arterial-alveolar pressure difference, 
independently of the value of the venous pressure, 
which is less than the alveolar pressure. Permutt refers 
to this as the “waterfall effect”, an obvious and graphic 
analogy which has been generally confirmed by 
experiment. 

However, the model must be tempered somewhat by 
realizing that zones 1,2 and 3 merge gradually into one 
another, during the interplay of reflecting pressure 
waves within a branching system ofdistensible tubes of 
varying compliance. Furthermore, a “surfactant” al- 
veolar lining which lowers surface tension, may keep 
capillaries open even for slightly negative values of the 
transmural pressure (Bruderman et al., 1964). 

A rigorous analysis of the dynamics of collapsible 
tubes has not yet appeared in the literature, although 
a first attempt in this direction has been made by 
Collins (1978). A recent steady-state analysis by 
Shapiro (1977) is ofconsiderable interest, although the 
“sonic” type singularities inherent in that solution may 
possibly not be appropriate to pulsatile flows which 
appear to be free of the restrictive compatibility 
conditions invoked for steady flow. 

We will conclude this brief and not exhaustive 
summary of previously proposed mathematical mod- 
els of the pulmonary circulation by mentioning the 
very interesting “sheet flow” concept introduced by 
‘Fung and Sobin (1969) to describe blood flow in the 
pulmonary capillary bed. The steady-state Hele-Shaw 
flow about the “posts” enclosed in the “sandwich” 
model of the idealized pulmonary vascular bed de- 
pends upon maintenance of very low flow Reynolds 
numbers for the absence of non-stationary wall flutter 
effects. 

The important question here is whether capillary 
vessels open and close in response to the instantaneous 
values of transmural pressure alone, or whether there 
exists a spectrum of finite opening times for collapsible 
vessels, as proposed by Maloney et al. (1968a). From 
the more general coupled solution of the fluid and wall 
equations (Tedgui and Collins, 1978), in lieu of the 
usual practice of introducing a pre-specified 
pressure-area law, it would appear that the Reynolds 
number may not constitute the only criterion by which 
dynamic effects are to be estimated. In addition, the 
residual axial wall tension and the distribution of 
longitudinal wall curvature may cause the vessel to 
“vibrate” in a manner reminiscent of a stretched violin 
string. But this complex behaviour will not be de- 
veloped further here. 

In the following sections, the morphology of the 
lung will be modelled in a discretized form, and flow 
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predictions based on it in conjunction with a non- 

linear method of characteristics solution described in 

the subsequent section will be tested against the results 

of Wiener et al. (1966) for the pulmonary circulation of 
the dog. The validated mathematical model will then 
be used to investigate the dynamics of flow trans- 
mission in the lung at different frequencies, and the 
results will be compared with the measurements of 

Maloney et rrl. (1968). 

2. MORPHOLOGY OF- THE PULMONARY 
CIRCULATION 

A variety of different casting techniques has been 
reported for the measurement of the large and fine 

structures of the irregular branching network of 

pulmonary arterial and venous vessels. A typical 

procedure (Cumming et al., 1970) may involve fixing 

the inflated lungs with liquid formalin (so as to 

eliminate gravitational effects), injecting a thermoset- 

ting resin and finally dissolving the surrounding lung 

tissue with hydrochloric acid (less viscous liquids are 

required to permeate the finer vessels). The lengths and 
diameters of the larger vessels (>2 mm) may be 

measured directly with calipers, while the dimensions 

of the finer and more fragile segments (40 pm - 1 mm) 
of the cast may be determined from corresponding 
photographs using a scanning electron microscope. 
For the latter. sampling techniques must suffice to 
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gauge the mean dimensions of the approximately 

10 pm vessels supplying each of the estimated 3 x IO* 

alveolar syncytia. 
The left side of the lung is of smaller volume than the 

right, probably as a result of the space occupied by the 
heart. The estimated left to right volume ratio of 0.82 
(Cumming et al., 1970) thus gives rise to some asym- 

metry in the branching ratios, as the two sides are 
perfused from the main pulmonary artery common to 

both. Much of the difffculty in characterizing the 

morphology of the pulmonary circulation has its 
origin in this asymmetry, and in the irregularity of the 

branching daughter vessels. 
For the purposes of our analysis of blood flow in the 

lung, four properties are of particular interest: the 

general architecture of the lung, the distribution of 
number, lengths and cross-sections of its branching 

vessels, the mechanical constitutive relations (e.g. 

pressure-area law) of these vessels, and finally the 

pressure and flow profiles at the proximal and distal 

extremities of the lung. Although statistical and sampl- 
ing difficulties may well cast doubts on the precision 

obtainable, only the data of Wiener et ul. (1966) for the 

dog lung appear to embrace all four of the required 
categories for a given network. 

Their representation of the lung in terms of4 lobes is 

depicted in Fig. I. and incorporates an averaged 

(although structurally incorrect) system of regular 

dichotomous branching; whereas Cumming et LI/ 
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Fig. 1. Discretized 4-lobe model of lung with generation numbers corresponding to lower right lobe (cf. 
Table 1). 
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Table 1. Idealized segments of equivalent lower right lobe on basis of Wiener et al. (1966) data 

Wiener data for lower right lobe Idealized segments of equivalent conduit 

Generation Number of 
number Length Cross-section Compliance Length Cross-section Compliance vessels 

G L(cm x lo-‘) S(cm’) a(cm&/dyn x 106) L(cm x 10-l) S(cm*) a(cm4/dyn x 106) N 

16.85 0.3800 

13.65 0.4827 

11.06 0.6132 

8.956 0.7790 

1.255 0.9896 
5.877 1.257 

4.761 1.597 
3.856 2.029 
3.124 2.577 

2.530 3.274 
2.050 4.159 
1.660 5.283 
1.345 6.711 

1.090 8.525 
0.883 10.889 
0.715 13.760 
0.579 17.475 
0.469 22.20 
0.380 28.20 

10.4110 

11.785 

13.339 

15.097 

17.092 
19.339 

16.85 0.3800 

13.65 0.4827 

11.06 0.6132 

8.956 0.7790 

f3.1320 1.1093 

10.4110 

11.785 

13.339 

15.097 

18.0975 23 

21.907 
24.789 
28.057 

11.7410 1.9996 24.4898 130 

31.771 
35.962 
40.701 
46.076 

7.5850 4.5623 37.3947 14.102 

52.141 
59.035 
68.829 
75.655 
85.615 
96.907 

4.1160 14.5623 67.4230 46.10’ 

EPary 
22 

:: 

0.740 71.40 87.073 
0.810 290.60 373.04 
0.660 98.80 214.48 

0.445 
0.5493 
0.6783 
0.8373 
1.0338 

1.2763 
1.5756 
1.9452 
2.4015 

2.9648 
3.6603 
4.5189 

5.5789 
6.887 5 

8.503 1 

10.4976 

12.9600 

16.0000 

32.70 218.66 
25.54 180.60 
19.95 159.26 

2.2100 159.92 230.23 29.10” 

25 
26 
27 3.5439 19.1150 152.81 66.103 
28 

B 
29 

3 30 
E 
B 

31 
32 

2 33 

8 34 
!Z 35 
Lx 36 

Z 

$ 37 38 

Z 39 

15.58 
12.17 

135.89 
115.98 

98.979 
84.460 
72.082 
61.509 

52.500 
44.799 
38.232 

32.626 
27.843 

23.761 

20.276 

17.305 

14.767 

9.506 
7.424 
5.799 
4.529 

7.1986 6.3882 76.033 29.10’ 

3.538 
2.7631 
2.1582 

1.6887 
1.3166 

1.0284 

0.8032 

0.6274 

0.4900 

11.1440 2.7240 44.196 260 

12.4664 1.4818 29.984 45 

8.503 1 1.0284 23.761 16 

10.4976 0.8032 20.276 8 

12.9600 0.6274 17.305 4 

16.0000 0.4900 14.767 2 

40 

41 

42 

Main arterial segments: pulmonary artery: L = 2.3, S = 1.33, a = 40.923 x 106; 
left lobar artery : L = 1.4, S = 0.60, a = 18.462 x 106; 
right lobar artery: L = 2.08, S = 0.60, a = 18.462 x 106. 

(1970) suggest that the most likely configuration is arterial and venous vessels respectively were main- 

characterized by a branching ratio (number of daugh- tained in their original configurations, while the 

ter vessels arising on average from each parent) of complete vascular bed was absorbed into an individual 

3.26 for the right lung and 3.50 for the left. In order to segment of equivalent total volume. Table 1 shows a 

formulate an efficient computational procedure which typical restructuring of the Wiener data for the lower 

still retains the salient mechanical features of the right lobe in terms of the lengths L, cross-sectional 

pulmonary circulation, successive groups of compara- areas S, compliances CL and number of vessels N 

ble generations (i.e. of similar lengths and cross- comprising each idealized segment of the equivalent 

sections) were gathered into equivalent segments of a tube. Segments in the left lung were taken to be 30% 
single conduit, one for each ofthe 4 lobes. Only the first narrower than in their right-hand counterpart, rather 

and last few generations of the larger pulmonary than the 50% differences occasionally evident in the 
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data of Wiener et al. (1966). It will be shown later that 
the distal pressure and flow profiles in the pulmonary 
vein are not overly sensitive to such anomalies in an 
individual lobe, as they are largely compensated by 
confluent flows in the remainder of the pulmonary 
circulation. In view of the limitations of this observed 
pulmonary response and the rather imprecise nature of 
the morphological data currently available, the pre- 
sently proposed discretized lobular configuration 
would appear justifiable. 

The distribution of vessel lengths and cross-sections 
from one generation to the next may be characterized 
reasonably well in the form of a geometric progression. 
Attinger (1963) proposes common ratios for the ar- 
terial and venous segments of the order of 0.8 and l/0.8, 
respectively, while the variation of the cumulative 
arterial vessel cross-sections by generation has been 
characterized by common ratios ranging from 1.1 to 
1.28 by Caro et al. (1965), Cumming et al. (1969) and 
Wiener et (I/. (1966). It is most important that the final 
equivalent “tube” configuration so developed does not 
contain abrupt changes in cross-sectional area or large 
divergence angles which could precipitate a spurious 
separation of the flow. 

Ofthe remaining two aspects of the characterization 
of the model lung, the pressure-area law is described in 
the next section, followed by the pressure and flow 
profiles required as boundary conditions to the 
numerical computation. 

3. MATHEMATICAL FORMULATION 

Each of the four pulmonary lobes is discretized in 
the form of a single equivalent elastic conduit of non- 
uniform cross-section, by grouping successive gene- 
rations of branching vessels into uniform segments as 
described in the previous section. Care must be taken 
to avoid spurious flow separation between adjoining 
segments by limiting the axial variation of cross- 
sectional areas in the idealized model. With this 
provision, the discretized morphology can lead to a 
considerable economy in computational effort. 

3.1 Gorerning equarions of motion 

The quasi one-dimensional unsteady equations of 
motion for flow of a viscous incompressible fluid in a 
deformable conduit of varying cross-section S may be 
expressed as 

s.5 + a(vs) o 
at ir,= ’ 

au ’ -+i(;+; at 1 -F=O, 

(3.1) 

(3.2) 

where u is the blood velocity averaged over the local 
cross-section, p, the locally-averaged transmural pre- 
ssure, p, the blood density, and F, the friction factor 
accounting for viscous drag between the blood and the 
vessel wall. Clearly this friction factor must be based 
upon the true vessel dimensions, and not upon the size 

of the equivalent lumped conduit. 
The one-dimensional friction factor F is defined in 

terms of the shear stress T at the wail as 

F=L,. 
pr 

with T = Cr. Jpc’Re-“, (3.3) 

where Re is the Reynolds number based on the true 
vessel radius r. For the laminar flow considered here, 
the parameters CJ (skin friction) and m take on the 
values (Kivity and Collins, 1974) m = 1. C, = 8. 

In terms of the true vessel cross-section .4 (= trr’). 
the friction factor is expressed as 

(3.4) 

and acts in a direction opposing fluid motion. If at a 
particular station, N such vessels of cross-section A 

have been combined to form the corresponding 
equivalent conduit of cross-section S, then F may be 
re-expressed in terms of the equivalent tube as 

(3.5) 

As particular vessels approach a progressively col- 
lapsed state during the cardiac cycle, relation (3.4) 
becomes modified toward an inverse quadratic law 
F - l/A’. However, since only a fraction of the true 
vessels making up the “equivalent” tube configuration 
will be grossly non-circular at any instant, relation 
(3.5) still remains a reasonable representation of the 
friction factor for the quasi one-dimensional flows 

studied here. 
For a system of elastic vessels, the transmural 

pressure can be expressed as a function of the single 
argument S. (Within this same condition, an appro- 
ximate provision may be made for vessel collapse in 
the event of negative transmural pressures). The 
resulting system of second-order linear differential 
equations is hyperbolic and may be re-cast into 
characteristic form 

dpkpc’dv= &r; (3.6) 

along the respective characteristic directions 

dx 

dt = v * (‘, 
(3.7) 

where the signal propagation velocity 

with 

s ‘as c2 =_//_ 
P’ ?P 

I- = pc8nN cdt. 
P 

(3.8) 

It is noted here that a more generalized (viscoelastic) 
pressure-area law for the equivalent conduit would 
entrain higher derivatives, invalidating a solution 
by the method of characteristics. These points have 
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been discussed in some detail by Anliker et al. 
(1971) and Collins (1978). In the latter work, it has 
been demonstrated that in the partially-collapsed state 
(p < 0), the transverse component of the axial tension 
may play an important role in opposing complete 
closure of the tube, and that this force component is 
proportional to the local longitudinal curvature. The 
first and second derivatives which then enter into the 
pressure-area relation would upset the second-order 
character of the present system. For this reason, an 
approximate, but still realistic treatment, valid for 
limited degrees of collapse (see Shapiro, 1977), is 
adopted. For S > So (the just distended cross-sectional 
area S, corresponding to p = 0) 

s = so + ap, (3.91 

where z is the average compliance of the tube segment, 
while for S 6 So, (partially collapsed state, for which 

p G 0) 

and 

for R< -1.5 
P 

(3.10) 

s = so [0.017(&)1 - 0.069($)2 + ,.,I,& + I] 

for - 1.5 < $ < 0, 
P 

where K, is a proportionality factor. 3.2 D#&ence equations 

The introduction of the third order polynomial The three equations (3.6, 3.9 and 3.10) in the three 
allows one to bridge the gap between the similarity hodograph variables p, L’ and S may be integrated in 

P -2,3 law in the region of collapse and the linear gp law the .x-t plane by a method of characteristics progress- 
in the inflated region without incurring a discontinuity ing along fixed increments in time (Fig. 3). Nominally 
in the derivative aS/ap at the point of transition uniform initial conditions are specified, and the calcu- 

s = so. lation evolves very rapidly toward a completely cyclic 

I I I , / / I 

-5 -I 0 I 

P/Kp 

Fig. 2. Pressure-area relation for pulmonary vessels. 

~ Experiments (Shapiro 1977). 
----- Similarity law (P/K,)r2’3. 
. . . . . . . Third order polynomial bridge. 

The continuous pressure-area relation (3.10) is 
sketched in Fig. 2 along with the corresponding 
experimental curve and the approximation of Shapiro 
(1977). The portion corresponding to negative trans- 
mural pressures will be invoked selectively over certain 
portions of the pulmonary network as a means of 
assessing quantitatively the as yet not fully understood 
contribution of vessel collapse to pulse transmission in 
the lung. 

The vessel wall compliance a is seen from Table 1 to 
increase as a geometric progression with common 
ratio of approximately 1.16 as one proceeds along the 
roughly 20 generations of arterial branchings toward 
the capillary bed. This does not necessarily imply, 
however, that the corresponding modulus of elasticity 
E varies inversely in the same proportions, as the 
cumulative cross-sectional area increases with a com- 
mon ratio ofabout 1.28 (with a constant radius-to-wall 
thickness ratio R/h of 10). The net effect on the elastic 
modulus E - S/a is an increase (progressive 
“stiffening” along the arterial segments), with a com- 
mon ratio of approximately 1.1 as one approaches the 
vascular bed. Milnor et al. (1969) draw attention to the 
possibility that arterial stiffening may be associated 
with some aspects of pulmonary hypertension. 

The compatible boundary conditions are those of 
specified velocity or pressure at the network ends (held 
at fixed cross-section) and continuity of pressure and 
mass flow at the internal branch points. 

(I) (21 (3) i4) 

, I i 

Fig. 3. Computational network in X-I plane. 
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Fig. 4. Characteristics net for typical interior points. 
Fig. 5. Characteristics net at junction between two vessel 

segments. 

behaviour, corresponding to pulsatile flow at different 
cardiac frequencies. 

Slightly different numerical procedures are adopted 
for the bifurcation points within the branching net- 
work of vessels. 

3.2.1 Irlterior points. The solution at a new time 
t, (= t + At) and position x3 is computed from the 
known solution at time t(= tl = tz) by determining 
two points .Y~ and .Y~ (by iteration) whose characterrs- 
tics intersect 3 at the pre-specified time increment Ar 
(Fig. 4). 

For these three points, equation (3.6) become 

c p3 - pl) + pc,(a, - u,) = -rF 
3 

(3.11) 

In terms of T, = p1 + pc,ul and T, = pz - pc2uz, 
and after elimination of v3 from (3.11) the pressure at 
point 3 becomes 

which may be solved iteratively, starting from an initial 
estimate of p3 and use of (3.9) or (3.10). Knowing the 
converged value of S3, the solution for vL) is obtained 
directly by eliminating p3 from equations (3.11) in the 
form 

T, - 7-2 
2’3 = ,c, + pc, + 2I-IS,’ 

(3.13) 

3.2.2 Junction points. At the junction between seg- 
ments, one may encounter a jump in the cross- 
sectional area, to which the solution is very sensitive. It 
is partly for this reason that S, was introduced into the 
right-hand members of the difference equations (3.11). 
One must distinguish here between stations distal (‘) 
and proximal (“) to the junction (Fig. 5). 

In terms of the C + characteristic emanating from the 
proximal segment a, and the C- characteristic from 
the distal segment b, the difference relations take on 
the form : 

(P; - PI) + PC,@4 - u,) = -r,: 

1:; 

(Pi - PI) + PC,(C’; - az) = l-2 F (3.14) 
3 

Continuity of pressure and flow rate are expressed 
respectively as 

Pi = P’; (3.15) 

and 
1.& = L’3 s, . (3.16) 

It is evident from (3.16) that a discontinuity in cross- 
sectional area at the junction between two discretized 
segments will lead to a similar jump in the flow 
velocity. Although such discontinuities indeed occur at 
physiological bifurcations of individual blood vessels, 
the effect may however be amplified in the idealized 
conduit segments, in which several generations have 
been combined. 

The solution of the system of difference equations at 
a junction point follows in much the same manner as 
described above for interior points, without any 
particular difficulty. 

3.2.3 Ordering of computations. The slope of the 
.individual characteristic curves varies by a factor of 
approximately five within the forty-odd generations of 
arterial and venous branchings, attaining its highest 
values within the capillary bed. This feature con- 
siderably complicates the internal “accounting” sys- 
tem, by which stations within and at the extremities of 
vessel segments must be identified in space and time. In 
particular, pressure and flow rates at the junctions of 
adjoining segments must be matched at identical 
instants of time. 

A system of fixed-time increments is most suitable 
for satisfying these requirements, and is achieved by 
transposing flow values to the desired time levels 
through interpolation along therespectivecharacteris- 
tic directions. Since the characteristic network in 
certain regions advances five times more iapidly than 
in others. the “valleys” thus created in the com- 
putational net must be progressively filled in the 
slower wave-speed regions, before advancing the rapid 
zones. 

Without entering into the tedious details of the 
programming necessary to advance the flow variables 
in time throughout the complete pulmonary network, 
one may summarize the ordered procedure as in Fig. 3. 

As a result of the repeated interpolations required to 
transpose flow variables calculated at the intersections 
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Fig. 6. Computational flow chart. 

of characteristic curves to the desired fixed-time 
intervals, the computational net may progressively 
skew to the left or right. A rezoning in the spatial co- 
ordinate becomes useful when the ratio between the 
largest and small Ax increments exceeds a value of two. 
A detailed flow diagram representing the overall 
programmed computational procedures appears in 
Fig. 6. 

4. VALIDATION OF THE MODEL 

Wiener et al. (1966) furnish pressure and flow 
profiles which have been measured at the proximal and 
distal extremities of the lung, and calculated (by linear 
theory) at intermediate generations. A judicious choice 
must be made in validating the numerical predictions 
of the present model with those data, which are not 
fully satisfactory for this purpose. In effect, the distal 
flow profiles (Fig. 7) reported by Wiener et (11. (1966) 

I I 
0.2 0.4 0.6 

f, set 

Fig. 7. Measured flow profiles (Wiener et ol., 1966). 
A: pulmonary artery. 
B: left atrium. 
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Fig. 8. Measured intra-luminal pressure profiles (Wiener ef Fig. 9. Experimental recordings at outlet from lung (Morkin 
al., t966). et ul., 1965). 

A: right ventricle. A: flow rate in the “small” veins 
B: left atrium. B: distal venous pressure. 

Table 2. Characteristics of 14 cases computed for comparison with flow transmission 
measurements of Maloney er al. (1968b) 
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Fig. 10. Computed pulmonary pressure and flow fields for validation with measured data of Wiener er nl. 
(1966). Explanation of corresponding stations is provided in Section 5. 

represent the combined output from the four lobes. We surprisingly free of the local oscillations (Fig. 9) 

have assigned to each lobe a fraction of the total associated with the corresponding data of Morkin et 
outflow in proportion to the distal venous cross- al. (1965), and one may suspect that the pulmonary 
section corresponding to each respective lobe. Fur- venous pressures reported by Wiener et al. (1966) 
thermore, Wiener et al. (1966)report absolute values of would better represent catheter measurements at a 
the intra-luminal pressures (Fig. S), but neglect to position clos.er to the left atrium, where a certain 
specify the extravascular levels which would permit degree of damping would have taken place. It must 
one to ascertain the required transmural pressures. further be assumed that the morphological data of 
The pressure profiles for the pulmonary vein are Wiener et u[. (1966) (Table I) refer to the right lower 
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Fig. 11. Computed proximal pressure profile (solid curve) 
using measured flow boundary conditions of Wiener et al. 
(1966) and comparison with their measured proximal 

pressure profile (dashed curve). 

lobe, on the basis of the associated number of gene- 
rations reported. For these reasons, it is not completely 
clear, for the purposes of validation, whether more 
confidence should be placed in the pressure boundary 
conditions, from which the flow profiles may be 
calculated and compared, or vice versa. 

A number of cases have been computed correspond- 
ing to both these alternatives, for each of which the 
relative roles played by fluid viscosity and vessel wall 
collapse have been assessed. One such comparison is 
given in Fig. 10, for which the reduced vessel calibre of 
Wiener et al. (1966) was preserved. The boundary 
conditions imposed at the proximal and distal ends 
were those of flow rate, proportioned to the lower right 
lobe, and modified by the measurements of Morkin et 
al. (1965). The computed pressure profiles which result 
are seen to be in good qualitative agreement with the 
measurements of Wiener et al. (1966), once converted 
to their transmural counterpart (Fig. 11). 

The r6le of fluid viscosity (taken as 4 centipoise) 
appears to be essential in these calculations. In the 
absence of viscosity, incoherent non-cyclic oscillations 
develop in the calculation, partly as a result of the 
cumulative undamped effects of wave reflections at the 
junctions between adjoining vessel segments. 

The influence of vessel collapse cannot be ade- 
quately evaluated, however, for the Wiener et al. (1966) 
data from which one deduces transmural pressure 
levels which remain essentially positive. Testing of the 
provisions for vessel collapse in the present model 
must therefore be reserved for the flow distribution 
experiments of Maloney et al. (196Q which will be 
discussed in the following section. 

5. COMPUTATIONAL RESULTS 

Following the validation in the previous section of 
the mathematical model by comparison with the 
published results of Wiener et al. (1966), we are now in 
a position to examine the behaviour of the solution in 
response to selected variations in the following four 
factors: (a) pulsatile frequency (at proximal end). (b) 
vessel wall compliance, (c) extent of vessel collapsi- 
bility and (d) absolute pressure level and effect of 
reversal of pressure gradient. 

Fourteen complete cases have been computed for 
the pressure and flow variations in the lower right lobe 
(typical of the four pulmonary lobes) and may be 
summarized as in Table 2. Of these, six have been 
selected to illustrate some physical characteristics of 
the pulmonary circulation. 

In these numerical results, the boundary conditions 
selected conform very closely with those applied in the 
experiments of Maloney et al. (1968). The distal end is 
maintained at a constant pressure level, while a 
sinusoidal pressurevariation is applied at the proximal 
extremity at frequencies varying from 0 to 5 Hz. 
Complete pressure and velocity fields are then com- 
puted. Slight incompatibilities in initial conditions are 
rapidly “corrected” as the solutions evolve toward a 
cyclic behaviour. As noted in Table 2, the 14 cases 
studied have been equally divided between purely 
distended and collapsible tubes; the former with 
differing values of the wall compliance. The effect of 
reversed flow perfusion is examined for collapsible 
tubes, and discussed in the framework of published 
experimental results. 

The graphs displayed in Figs. 12-17 have been 
plotted automatically in the computer. The left half 
portrays the pressure profiles in space and time as 
indicated by the three-dimensional surface plot, fol- 
lowed by three rows of p-t curves; the first row 
corresponding to three equi-distant stations in the 
arterial portion of the lobe, the second to the entrance 
to the precapillaries. capillaries and exit from the post- 
capillary vessels respectively, while in the third row are 
represented profiles at three equi-distant stations in 
the venous portion. The bottom two curves represent. 
respectively, the proximal and distal boundary con- 
ditions on the pressure. In Figs. 12-14, this second 

curves reduces to the abscissa p = 0; whereas thedistal 
pressure is maintained at a constant non-zero value 
(after an initial rapid ramp rise) for Figs. 15- 17. 

The right half of each figure depicts similar curves 
for the flow rate. Since each individual figure has been 
magnified to different degrees in order to till its 
respective square, the scales may vary amongst them. 
Nonetheless, the following constant intervals (in- 
dicated on each coordinate axis) are common to all 
figures and are sufficient to quantify the graphical 
results: time interval 0.2 set, pressure interval 2500 
dyn/cm’, and volume flow rate interval 25cm3/sec. 
The boundary conditions will be chosen in order to 
permit direct comparison with the experimental 
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Fig. 12. Computed pulmonary pressure and flow fields, without collapse, at 1 Hz (case 2, Table 2). 

results of Maloney er al. (1968). 
Fig. 12 presents typical flow results for a 1 Hz input 

pressure variation of amplitude 5000 dyn/cm’ super- 
posed on a constant longitudinal pressure gradient 
corresponding to a pressure drop of 10,000 dyn/cm’ 
(10 cm HzO) across the entire branched network. The 
computations clearly confirm the growth of the ampli- 
tude of pressure pulses in the arterial portion of the 
pulmonary circulation. Such behaviour has been ob- 
served experimentally in the systemic circulation, as 

one moves progressively away from the heart. This 
amplification (ct Attinger, 1963), quite contrary to the 
behaviour of rigid industrial branched conduit sys- 
tems, has been largely attributed to the increase in wall 
stiffness with distance from the heart, as well as the 
nonlinear wave steepening character of the flow equa- 
tions: The highly three.-dimensional anatomy of the 
lung renders direct measurements (beyond the third 
generation of branching) extremely difficult, if not 
impossible, in the pulmonary circulation. For the 
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Fig. 13. Computed pulmonary pressure and flow fields, without collapse, at 3 Hz (case 4, Table 2). 

intermediate flow field, one must rely upon realistic 
computations which account for a variation in vessel 
compliance as one progresses from the pulmonary 
artery toward the capillary bed. As was pointed out 
earlier, this variation is quite significant, resulting, in 
the present calculations, in differences in wave speed of 
a factor of five within the pulmonary circuit. 

These results furthermore confirm the widely accep- 
ted hypothesis that the most significant portion of the 
pressure drop occurs in traversing the capillary bed. 

The greatly attenuated pressure nonetheless still con- 
serves its pulsatilecharacter as it enters the pulmonary 
venous network: the abrupt drop in pressure at the 
capillary level is most striking in the three-dimensional 
surface plot of p(x,t) in the top left corner of this 
sequence of figures. 

The computed flow wave forms at the proximal and 
distal extremities (right-hand half of Fig. 12) indicate a 
time delay cf = 3 Hz) of approximately 0.1 set for a 
flow disturbance to traverse the complete pulmonary 
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Fig. 14. Computed pulmonary pressure and flow fields, with doubled compliance, at 3 Hz (case 7, Table 2). 

lobe, in agreement with Morkin et al. (1965). This also forms become distorted in relation to the proximal 
corresponds, for a transit distance of about 35 cm, to a wave shapes, due to the intervening regions of partial 
velocity of 350 cm/set, in excellent agreement with the collapse and wave reflections. Flow oscillations are 
measurements of Attinger (1963). In all figures for practically unattenuated in the pulmonary arterial 
forward flow in the lung, the similarity between system, but become partially damped as the blood 
proximal pressure and flow-rate wave forms persists. enters the capillary bed. This behaviour is in complete 
This is not surprising, since in the absence of collapse qualitative agreement with the observations of At- 
(the onset of which is delayed at the proximal end tinger (1963) for the inflated and deflated lung (cf. his 
where the transmural pressure is at its highest level), an Figs. 8 and 9 for pulmonary venous wedge pressure). 
elastic relation holds. However, the distal flow wave The oscillations are again reinforced as the flow 
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Fig. 15. Computed pulmonary pressure and flow fields. with collapse, at 1 Hz (case 9. Table 2) 

emerges into the venous branching system. 

Similar qualitative features of the flow are main- 

tained as the frequency is increased. At 3 Hz (Fig. 13) 

the distal flow rate is seen to have fallen to about 707; 
of its proximal value (based on the ratio of the peak-to- 
peak amplitudes at the distal and proximal ends). In 
fact, this attenuation increases with increasing fre- 
quency, and has been confirmed experimentally by 
Maloney et al. (1968a, b). The flow transmission, 
defined by the distal/proximal ratios of the peak-to- 
peak amplitudes of the flow oscillations, has been 

plotted for the combined cases l-5 (Table 2) in Fig. 

18a. 
An- important feature, which is most difficult to 

investigate in the laboratory, is the role played by wall 
compliance in the transmission of blood flow through 
the lung. Computational results (cases 6 and 7 of Table 
2) have been obtained for one-half and for double the 
normal compliance. Curves for the latter case are 
shown in Fig. 14 and may be compared directly with 
the normal compliance results of Fig. 13 at the same 
frequency of 3 Hz. The effect is dramatic, as seen by the 
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Fig. 16. Computed pulmonary pressure and flow fields, with collapse, at 3 Hz (case 11, Table 2). 

very wide variation in flow transmission which results 
(Fig. 18b). Halving the compliance appears to render 
the vessels quasi-rigid, resulting in an almost 100% 
transmission of the blood flow from the pulmonary 
artery to the distal left atrium with virtually no losses 
(although viscous dissipation and a slight drop in 
stagnation pressure due to intermittent vortex for- 
mation at branch points may cause some attenuation). 
On the other hand, a general doubling of the vessel 
wall compliance leads to a marked drop in flow 

transmission to a level of 20% as energy is dissipated in 
increased wall motion. (Attenuation in the localized 
capillary bed itself is, however, leas affected by changes 
in compliance, since the natural pressure drop there is 
already much greater.) 

But the effect of wall collapsibility will be seen to be 
even more significant! During collapse, the vessel 
momentarily assumes a high “effective compliance”. 
Cases 8-11 (Table 2) have been computed with a 
provision for vesselcohapse in a region extending from 
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Fig. 17. Computed pulmonary pressure and flow fields, with retrograde flow at 3 Hz (case 13, Table 2). 

the pre-capillaries to the left atrium for a range of 

pulsatile frequencies. Results of cases 9 (1 Hz) and 11 
(3 Hz) are shown in Figs. 15 and 16, respectively. The 
proximal (pulmonary artery) transmural pressure was 
maintained at zero, upon which was superimposed a 
fluctuating sinusoi’dal component of amplitude 
5000 dyn/cm’, while the distal end was maintained at a 
constant level of - 10,000 dyn/cm’. Comparisons of 
Figs. 12 and 15 for a pulsatile flow at 1 Hz confirm that 
time-dependent pressure and flow oscillations are 

smoothed out under conditions of partial collapse. The 

marked decrease in flow transmission for the col- 

lapsible network at 1 Hz is further corroborated in 
Figs. 14 and 15 for pulsatileflow at a frequency of 3 Hz. 
The results are general, and the variation of flow 
transmission with frequency for a collapsible pul- 
monary network is traced in Fig. 18(c), alongside the 

corresponding experimental results (Fig. 186) of 
Maloney et al. (1968), which were carried out with 
boundary conditions corresponding to those utilized 
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Fig. 18. Flow transmission in the lung as a function of 
pulsatile frequency: 
A: Comnuted without vessel collapse for normal wall 

comp’liance. 
B: Computed without vessel collapse for half and double 

compliances. 
C: Computed with vessel collapse and normal wall 

compliance. 
D: Measurements of Maloney er al. (1968b). 

in the present numerical solution. Amongst the com- 
puted curves of flow transmission shown in Fig. 18, 
only the curve c which accounts for vessel collapse, 
adequately approaches the measured Maloney et al. 

(1968b) results. The comparison could probably be 
further improved by refining the model of tube col- 
lapse by means of a rigorous analysis of the dynamics 
of collapsible tubes (see for example Tedgui and 
Collins, 1978). The transmission curves for distensible 
vessels, without a provision for collapse (Fig. 18a), do 
not attenuate rapidly enough with increasing fre- 
quency. Although increases in wall compliance have 
been shown (Fig. 18b) to accelerate this attenuation, 
the magnitudes of compliance required are more than 
two-fold, and hence difficult to justify on purely 
physiological grounds. It would appear then that 
vessel collapse is an inherent and highly essential 
characteristic of pulsatile flow in the pulmonary 
circulation, and its role can be studied quantitatively. 
In fact, Maloney et a/. (1968b) note that the net 
transmission of pulsatile flow in the lung is indepen- 
dent of outlet pressure. This is reminiscent of a global 
Starling resistor (Permutt et al., 1962) for which the 
inlet minus external pressure difference regulates the 
outflow for vessels in a partially collapsed state. 

If the transmural pressure is raised globally through- 
out the network (for example by deflating the lungs) 
one would intuitively expect the otherwise collapsed 
vessels to remain open during the flow cycle. Such an 
effect is indeed observed in the results of case 12 (Table 
2) which resemble so closely those of case 2 (Fig. 12) 
that it has not been deemed necessary to reproduce 
them here. In effect, deflation of the lungs by 1Ocm 
Hz0 (10,000 dyn/cm’) “raises” the network out of the 
collapsible regime, and consequently places it on the 
slowly attenuated transmission curve of Fig. 18(a), 
corresponding to no collapse. In this case, time- 
dependent oscillations persist to a much greater extent 
than for the inflated lung (collapsible vessel) counter- 
part. This very phenomenon has been observed by 
Attinger (1963), who concludes from his experimental 
findings that “pulmonary capillary flow is less pulsatile 
during positive pressure inflation as compared to 
deflation”. 

Lastly, the present numerical solution may be 
employed to investigate the effect of retrograde flow on 
the transmission properties of the lung. Maloney et al. 

(1968b) conclude from their experiments that the 
transmission of pulsatile flow was identical for per- 
fusion in the forward and reverse directions. This 
implies approximate symmetry of elastic properties in 
the arterial and venous segments of the lung, but these 
diverge as one moves away from the capillary bed 
(Table 1). This symmetry is also confirmed by Caro et 

a/. (1965) in their experiments on the distensibility of 
blood vessels in isolated rabbit lungs. Maloney et al. 

(1968b) have measured identical values of compliance 
(0.5 ml/cm H20) in the arterial and venous segments of 
a horizontal isolated lung preparation. 

The numerical results of case 13 (Fig. 17), utilizing 
‘the values of vessel compliance given by Wiener et al. 

(1966), appear to verify this conclusion when com- 
pared with Fig. 16 (case 11, Table 2) for forward flow at 
a frequency of 3 Hz in a collapsible network. In this 
respect, some qualifying observations should be made 
regarding the earlier studies of Caro et al. (1967) and 
the more recent model of Dawson et a/. (1973). 

Caro et al. (1967) studied pressure oscillations in 
patients without pulmonary hypertension. The auth- 
ors observed higher attenuation of pressure trans- 
mission in the backward than forward flow direction, 
and attributed this effect to inequality of the arterial 
and venous compliances. It is possible however that 
some loss of control in the boundary conditions may 
have developed during their occlusion of the distal 
cross-section for purposes of measuring the “wedge” 
pressure oscillations. A similar comment is to be made 
concerning the studies of Maloney et al. (1968) using 
horizontal isolated lung preparations. Those authors 
explicitly point out their inability to maintain constant 
pressure at the downstream end of the pulmonary 
vessels. It is primarily for this reason that only their 
flow transmission data have been used in comparing 
predictions of the present mathematical solution. 
Qualitatively however, it is clear from the latter 
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experiments that pressure transmission is attenuated 

with increases in pulsatile frequency, in a manner 

similar to that of flow transmission. 
Dawson et al. (1973) have presented a grossly- 

lumped model of the pulmonary vasculature consist- 
ing of collapsible parallel units, each made up of 
Starling resistors in series. They state that their 

numerical values were not chosen to correspond to 
physiological values, and that the simplified Starling 

resistor model “does not adequately handle the 

differences between forward and retrograde perfusion 
in the isolated lung” which their results would imply. 

are fully open, and slightly distended. No backflow is 

evident here throughout the pulsatile cycle. (The 

situation may be likened to that of section F of 

Maloney et ul., Fig. 8.) The peak value of flow is the 
same in both our cases, under the influence of identical 
pressure gradients during the peak pressure phase. 

In view of these shortcomings, and the indications 

of the present analysis. there would appear to be no 
sound basis for concluding that forward and reverse 
pulmonary flows should be significantly different. 

An interesting set of experiments aimed at determin- 

mg the distribution of blood flow in a vertical lung and 

its variation with pulsatile frequency has been de- 

scribed by Maloney et al. (1968a). An isolated dog’s 
lung was subjected successively to a pulsatile flow and 
pressure, at different frequencies between 0.03 and 

2.3 Hz. superimposed on a steady-state level. The 
pulmonary blood flow was measured by a technique 

using injected radioactive xenon-133 which, due to its 

low solubility in blood, is convected into the alveoli as 

a gas. presumably in proportion to the local value of 

the blood flow rate. The investigators detected an 
augmentation of the flow about the height (h,, say) in 

the lung at which they estimate that the pulmonary 

vessels are just on the verge of collapsing (i.e. local 

blood pressure equals alveolar pressure). This flow 

“excess” (relative to the flow level existing in the 

absence of the pulsatile component of the input flow 

and pressure) decays as one moves above and below 
the it,,, level. Furthermore, the amplitude of this excess 

was found to decrease as the frequency increased up to 
3 Hz. At these higher frequencies, the flow distribution 
was found to approach that of steady perfusion (with 

the exception of a localized region at the base of the 
lung in which this tendency was reversed). 

It is clear that the net flow per cycle decreases in 

absolute value as one moves up a height of 1Ocm 
between these two levels in the lung and approaches 

the collapsed state. This is indeed what one might 

intuitively expect. The point being made by Maloney 

et al. (1968a) is that in spite of this decrease in absolute 
flow level, an “excess” exists relative to the correspond- 
ing steady state. Their interesting thesis to explain this 

depends essentially upon the assumption that “in such 
a system no backflow will occur when the arterial 

pressure is less than the alveolar pressure. because the 

vessel will collapse”. 
In fact, the conditions necessary for vessel collapse 

are not so clear cut. A detailed analysis (Tedgui and 

Collins, 1978) of the dynamics of collapsible vessels 
shows that the conditions for collapse can be com- 

puted on the basis of the instantaneous cross-section, 
the local variation of longitudinal curvature of the 

vessel. and its residual tension. in addition to the 

temporal variation of transmural pressure. One may 

conclude from that investigation that pulmonary 
blood vessels may indeed fluctuate between a state of 

full distension and various degrees of partial collapse. 

without ever closing completely. 

The “valvular mechanism” suggested by Maloney et 
al. (1968a) to explain flow excess, has intuitive appeal, 
but the highly complex and interactive nature of 

pulsatile flows through collapsible biological vessels 

subjected to longitudinal tension may call for some 
caution. The preliminary analysis developed here 

would appear to indicate that quantitative solutions 

are well within the realm of possible efficient com- 
putational procedures. 

Although we have not yet made a complete study of 

this phenomenon. the results of our cases 9 and 12 

(Table 2) depicted in Figs. 15 and 13 respectively, 

presently permit a restricted basis ofcomparison. Only 

absolute values of the flow rate can be evaluated here. 
as no computations were made for the steady flow case 
which has no physiological significance. We recall that 
the only difference between the boundary conditions of 

cases 9 and I2 is that for the latter, the background 

pressure has been raised by the equivalent of about 
10 cm HzO. In other words. the results of case 12 (Fig. 

13) can be taken to correspond to a horizontal section 
of lung lying 1Ocm below that of case 9 (Fig. 15). 

Finally, we note the influence of vessel collapse on 
the frequency at which maximum fluctuations in the 

flow rate occur. The maximum and minimum values of 
the flow rate at the inlet and outlet, respectively, of the 

pulmonary network appear in Fig. 19 as a function of 

pulsatile frequency. In the presence of vessel collapse. 

there is a marked resonance-like behaviour at a 

frequency of 2 Hz, very close to the natural cardiac 
frequency of the dog. If the provision for vessel collapse 
is suppressed in the model, these fluctuations appear to 

shift their maxima to a frequency of 3 Hz. 

6. DISCUSSION 

Under these conditions, it is noted that the upper The foregoing results have confirmed that dynamic 

section (Fig. 15) lies in a partially-collapsed state collapse of the pulmonary vessels is the key factor 

(corresponding to section D in Fig. 8 of Maloney et al., controlling the flow transmission characteristics in 

1968a). Back-flow occurs since the vessels in the the lung. Its influence far outshadows variations pro- 

capillary region have not fully collapsed. However, for duced by physiological changes in the blood viscosity, 

the lower pulmonary section of our Fig. 12, the vessels pressure gradient and overall wall elasticity. 
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Fig. 19. Maximum and minimum values offlow rate Q at the 
inlet (0) and outlet (0) to the lung as a function offrequency 
for 

(a) collapsible pulmonary vessels 
(b) no provision for collapse. 

In the interest of simplicity, only an approximate 
treatment of collapse has been suggested here. The 
principal feature of the present formulation hinges on 
the pre-assumed pressure-area law of Fig. 2. 

This relationship incorporates the similarity ana- 
lysis of Flaherty et al. (1972) which is valid in the region 
near complete collapse and has been verified by 
experiments (Shapiro, 1977) on thin-walled latex tub- 
ing. Its genera1 configuration would be expected to 
conform reasonably well to the tube law for physio- 
logical vessels. 

The slope of the linearized segments of the 
pressure-area curve (Fig. 2) represents the wall com- 
pliance, and is inversely proportional to the cor- 
responding modulus of elasticity. The value of this 
compliance increases dramatically and abruptly as the 
initially distended vessel collapses, but the vessel 
subsequently re-assumes its lower compliance upon 
re-inflation. It is precisely this effective and sudden 
“switching” between high and low levels of “in- 
stantaneous elasticity” which has been shown here to 
account for the rapid decay in flow transmission 
observed by Maloney et al. (1968b). Permanently 
elevated values of compliance are neither effective nor 
realistic in explaining this attenuation with increasing 
frequency. Nor can the significant flow attenuation 
observed in the venous segments be well-reproduced in 
the computations without invoking vessel collapse. 
These results would tend to confirm the conclusions of 
Permutt and Riley (1963) on the relative importance of 
recruitment of collapsed vessels, as opposed to the 
further distension of open vessels. 

6.1 Influence diagram 
Drawing upon numerous sets of laboratory and 

clinical observations and measurements, it is useful to 
summarize pictorially, by means of an “influence 
diagram”, the system of causal relations linking the 
various physical parameters of the pulmonary circu- 
lation. Such an attempt is represented in Fig. 20, in 
which the arrows indicate the direction from cause to 
effect. Solid lines denote positive influences, i.e. 
changes in the cause and effect parameters have the 
same sign; whereas dashed lines denote negative 
influences, implying changes with opposite sign. 

Most external influences are seen to act upon the 
pulmonary arterial pressure, which in turn controls the 
wall compliance via the position of the blood vessels in 
the pressure-area plane of Fig. 2. For example, on 
exercise, the pulmonary artery pressure increases 
(West et al., 1964), thus opening (or recruiting) par- 
tially closed vessels. The flow field is displaced toward 
the right of Fig. 2 implying decreased values of the 
compliance (a + al). Pressure and blood flow trans- 
mission are augmented, thus effectively enhancing the 
oxygenation capacity of the lung in the face of the 
external demand, by momentarily opening vessels 
normally in a partially collapsed state, and thereby 
extending the regions of effective blood perfusion and 
gas exchange within the lung. A similar response is 
elicited in the presence of a pulmonary occlusion or 
obstruction of the lumen, and the often associated 
condition of pulmonary hypertension. West et al. 
(1964) have pointed out that flow distribution in the 
lung can be completely accounted for by the mechani- 
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Fig. 20. Influence diagram for pulmonary response. 

cal effects of transmural pressure. In this respect, 

neural control and kasomotor tone can be considered 

as acting directly upon the pulmonary arterial pre- 
ssure, and hence mechanically upon the rest of the 

system, as depicted in Fig. 20. On the other hand, the 
predominant influence of mild mitral stenosis and left 

ventricular failure is to raise the pulmonary venous 

pressure, inducing a slighter rise in the pulmonary 

arterial pressure, which again shifts the system towards 

the right of the S-p curve (Fig. 2), with the net effect of 
improving flow transmission, and perfusion of the 

upper portions of the lung. By such means, nature 

attempts to resist perturbations by returning the 

system to its normal state. 
Maloney et al. (1968) report that, under certain 

conditions, transmission of pulsatile flow is inde- 
pendent of outlet pressure. The concept of a Starling 

resistor (Permutt el al. 1962) immediately comes to 
mind here. If the arterial pressure exceeds the alveolar 
pressure, which in turn is greater than thedistal venous 

pressure, the flow is determined by the difference 
between the proximal arterial and external alveolar 

pressure, the venous pressure being likened to the 

bottom of a waterfall, clearly having no influence on 

the upstream conditions. 
Milnor (1972), in his excellent review chapter on 

pulmonary hemodynamics, refers on page 325 to 
investigations showing that “resistance can be lowered 
by raising pulmonary arterial or venous pressures, but 
the mechanism for this effect is uncertain”. However, a 
simple and rational explanation suggests itself on the 
basis of the foregoing infiuence diagram. If one 
interprets lowered “resistance” (a concept of very 

limited utility which is associated with a mathematical 

similarity between the equations governing linearized 

fluid flow and an electrical transmission line) as 

equivalent to enhanced flow transmission, then the 

influence diagram (Fig. 20) shows immediately that 
increasing arterial pressure leads to a decrease in vessel 

compliance (by opening partially collapsed vessels -- 
cf. Fig. 2) and an increase in pressure transmission and 

hence flow transmission, the latter implying a de- 

creased “resistance”. 

Parenthetically, it is to be emphasised once again 

that a linearized flow analysis, along with its associated 

concepts of resistance or impedance, although in wide 

use by physiologists and clinicians, can miss some very 
important features of wave propagation in distensible 
tubes. Proper account of wave reflections at bifur- 
cations and tube ends, and the progressive nonlinear 

steepening of pressure pulses in the arteries of both the 
systemic and pulmonary circulations, requires retain- 
ing the troublesome but important inertial terms in the 

governing equations of motion. 

The present computational model should.facilitate 
quantitative predictions of such pulmonary response. 
Nonetheless, certain features and limitations of the 

model bear further comment. 
It has been found to be essential to include fluid 

viscosity, without which the numerical computations 
may become unstable. For simplicity, thecapillary bed 
has been encompassed within the equivalent single 
conduit model. on the basis of vessel dimensions given 
by Wiener et al. (1966). notwithstanding the detailed 
“sheet-flow” model developed by Fung and Sobin 
(1969) for quasi-steady flow. The present results would 
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suggest that pulsatility persists down to the capillary 
level, an effect earlier corroborated by Skalak (1972). 
Although it may well be reasonable to describe 
capillary response as a succession of quasi-steady 
states as proposed by Fung et al. (1972), fluid accele- 
ration cannot be neglected for most pulmonary vessels 
lying outside the capillary bed. 

Non-stationary effects are clearly important in 
determining the pressure and flow fields, which appear 
to move in unison throughout the arterial segments of 
the pulmonary circulation. The calculations confirm 
the substantial pressure drop usually attributed to the 
capillary bed. 

A certain number of secondary but interesting 
features which have not been included in this sim- 
plified analysis could easily be incorporated. One 
concerns the increase in entropy due to possible vortex 
formation at the dichotomous bifurcations within the 
40-odd generation idealized pulmonary network. This 
is translated physically into a loss of stagnation 
pressure or “total head”. Its effect in large vessels has 
been studied by Pedley et al. (1971) and others, and 
could easily be accounted for approximately in a one- 
dimensional flow model by adjusting the value of N in 
equation (3.5). Under normal physiological con- 
ditions, energy-dissipating vortices are rarely obser- 
ved, and if so, are extremely short-lived as a result of 
the natural flow pulsatility. 

The piecewise-linear pressure-area relation for the 
vessel wall (Fig. 2) can readily be generalized to curved 
segments with absolutely no additional computational 
difficulty. As indicated earlier, the data of Wiener et a/. 

(1966) formed the basis of the examples computed 
here. More detailed information justifying a generali- 
zation ofthe tube law is not presently available. The far 
more important refinement lies in recognizing that 
such a pre-determined pressure-area relation does not 
rigorously exist a priori. Rather, the transmural press- 
ure is a function not only of the local cross-sectional 
area, but also of the local radius of curvature in the 
longitudinal plane. Bergel(l972) notes that biological 
vessels are often under considerable residual axial 
tension, as they retract under excision from 25 to 40”/ 

The characteristics of such a vessel under conditions 
of dynamic collapse may be considerably modified by 
these restoring tensile forces, in the same way in which 
a guitar string vibrates in response to its pre-tension! 
The viscoelastic character of the vessel wall has been 
neglected here. On the basis of the experiments by 
Collins et al. (1978), one may safely discard viscoelastic 
forces in comparison with the above-mentioned con- 
straints acting upon pulmonary vessels. 

The present model may describe the type ofhorizon- 
tal lung preparation utilized in isolated lung experi- 
ments. Although the effect of gravity may be included 
in the fluid equations, good predictions for horizontal 
slices at different levels within the lung may be 
computed by adjustments of the pulmonary arterial 
and venous pressures to account for the variation in 
hydrostatic head. 

7. CONCLUSIONS 

A mechanical flow model of the complete pul- 
monary circulation has been formulated on the basis of 
the nonlinear unsteady equations of fluid motion. The 
introduction of an experimentally verified relationship 
between transmural pressure and local cross-sectional 
area, which provides for partial or total collapse of 
certain vessels, has been demonstrated to be an 
essential feature of the model. Good agreement has 
been obtained between predictions of sharp attenu- 
ation of flow transmission with pulsatile frequency 
and the experimental results reported by Maloney et 
al. (1968) for the isolated dog lung. It has been further 
shown that even substantial alterations in vessel wall 
rheology (compliance), without accounting for col- 
lapse, cannot produce this observed response. 

The nonlinear features of the analysis are important 
for the proper treatment of wave reflections and the 
observed steepening of the pressure pulses in the 
proximal arterial segments of the pulmonary network. 
The model also predicts no significant differences in 
the character of forward and retrograde flows, in 
accordance with the consensus of experimental 
findings. 

In the interest of simplicity, certain secondary 
effects, such as momentary losses in stagnation press- 
ure due to possible short-lived bursts of vorticity at 
bends and branchings in the pulmonary tree during 
pulsatile flow, have not been included in this pre- 
liminary model. The influence of gravity is readily 
incorporated by adjustment of the pulmonary arterial 
pressure with height in the lung. Flow in the capillary 
bed has been treated simply by incorporating the 
vascular network within the 40-odd generations of the 
complete pulmonary tree. Computations confirm that 
the major drop in blood pressure occurs across the 
capillary bed. 

The complex and controversial question of the 
existence of a spectrum of finite opening times for 
collapsible vessels (Maloney et al., 1968a) is only 
partially answered by the present analysis. Its re- 
solution hinges very sensitively on the form of the 
pressure-area law which one adopts. The present 
relation, which provides good phenomenological 
agreement with observed pulmonary behaviour, 
implies a dependence of vessel cross-section on local 
transmural pressure only. Therefore, changes in cross- 
sectional area are necessarily synchronous with 
pressure changes in this approximate formulation. 

A definitive conclusion would require application of 
a simultaneous solution of the fluid and wall equa- 
tions, without the assumption of such a pre-specified 
“tube law”. An analysis of the dynamics of flow in 
collapsible tubes (Tedgui and Collins, 1978) proves 
considerably more complex as it accounts for the 
significant, residual longitudinal tension and local 
curvature distribution of the vessel walls. 

The pulmonary circulation appears to possess a self- 
regulating control system, whose character is 
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schematically represented here in the form of an 
influence diagram. It is suggested that mechanical (or 
even certain vasomotor) effects may act upon the 
pulmonary arterial pressure level which in turn reg- 
ulates the instantaneous effective compliance of the 
collapsible vessel segments, thus determining the char- 
acter of ensuing wave propagation. Such graphical 
representations of pulmonary response may even- 
tually be quantified for specific clinical situations. 
hopefully providing an improved guide to correct 
diagnosis and therapy of pulmonary disorders. 
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