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Abstract-Recent statistical surveys into the causes of automobile Fatalities have shown that traumatic 
rupture of the aorta followed by immediate exsanguination is responsible for a significant percentage of 
traffic deaths in the United States. The object of this investigation is to understand a possible mechanism 
for this failure. A mathematical analysis is presented of the motion of blood in a distensible viscoelastic 
segment of aorta subjected to a deceleratlve force field. Calculations of axial wall strain and strain-rate 
indicate that wave propagation resulting in abrupt shock-like transitions along the aortic wall may well 
account for the transverse ruptures observed. when compared with the limited amount of rupture data 
presently available. The analytic method and numerical solution by a two-step Lax-Wendroff differencing 
scheme are sufficientlv general to describe a wide variety of initial and boundary conditions related to 
blunt impact to the thorax. 

I. INTRODUCTION 

Blunt impact to the thorax often results in traumatic 
rupture of the aorta, leading to immediate exsanguina- 

tion. Current interest in the mechanisms of this failure 

is great (Roberts and Beckman, 1970), particularly with 
regard to vehicular fatilities in which passengers are 

subjected to high levels of deceleration. An estimated 

61-83 per cent of all such aortic ruptures occur in 

automobile collisions. Mechanical forces acting on the 

wall of the aorta may derive: from the intra-aortic 
pressure field which changes significantly during im- 

pact. from sudden local stretching of the wall at points 

of relative fixation, or from the effects of nonlinear 
wave propagation along the aorta. The dominant 

mechanism(s) responsible for rupture still constitute a 

subject of considerable controversy in the medical 
literature (see references). In the next section, a review 

is presented of the current hypotheses concerning the 
mechanisms of aortic rupture. followed by a theoreti- 

cal analysis of the coupled problem of fluid and wall 
motions for a straight aortic segment subjected to 

various levels of acceleration. 

2. EARLIER INVESTIGATIONS 

Rindfleisch (I 893) was among the first to observe 
pathological rupture of the aorta. proposing that its 

location is in all cases determined by the degree of 
attachment of the aortic arch and the pulmonary 
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artery. Often a split occurs between the media and 
adventitia which results in complete isolation of the 

aorta in an aneurysmic ‘sack’. This may then burst 

outwards, leading to immediate exsanguination. 

Greendyke (1966) found, in a statistical study. that the 

common site of rupture was the aortic isthmus. (just 
distal to the insertion of the ligamentum arteriosum) 

comprising more than half the cases examined. He 

affirmed the traditional explanation for the high inci- 

dence of ruptures at this location as that due to inertial 

forces developed during the deceleration. These forces 
pull on the vessel at its points of fixation, particularly 

at the arch, where the greatest strain results. Ruptures 

may also occur in the ascending aorta, proximal to its 
zone of fixation near the arch. The attachment of the 

proximal end of the ascending aorta in the heart does 
not possess the same degree of rigidity. due to the 

mobility of the heart. Relative mobility of the aorta 
also exists at the descending thoracic aorta at the dia- 

phragmatic hiatus, and the abdominal aorta. proximal 
to its bifurcation. The cases of aortic rupture examined 

by Greendyke in which trauma to the chest was absent 

caused him to confirm the idea that violent horizontal 

deceleration alone is adequate to cause rupture. It is 

noted that rupture was twice as common in occupants 

who were ejected from the automobile during collision. 
March and Moore (1957) quoted by Greendyke. esti- 
mate that although a vehicle stopping from 30 m.p.h. 
in a distance of two feet is subjected to a deceleration 
of 15 p; the passengers. who may stop in inches (rela- 
tive to the vehicle) may be subjected to I50 g. Head-on 
collisions may at higher speeds. increase these figures 
by a factor of X. In some cases. this effect alone is suffi- 
cient to rupture the aorta. 
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Rutherford (1951) reported on four cases of aortic 
rupture. all occurring in the isthmus region. Since in 
two of thecases, thisconstituted theonly injury, with no 
evidence of crushing or flexing of the chest or spine, the 
mechanism is believed due to a pulling away of the 
aorta from the well-anchored arch. This produces a tear 
or rupture immediately distal to the arch. Fidler (1949) 
observed that spontaneous rupture (due to medio-nec- 
rosis) often occurs in the ascending portion of the 
aorta, and only rarely in the descending portion. Trau- 
matic rupture, on the other hand, may be directed to 
certain parts of the aorta by virtue of its anatomical 
attachments. In the age group 2341, the aorta of adult 
males is of fairly uniform strength. The great majority 
of traumatic ruptures occur nonetheless at the aortic 
insertion of the ligamentum fibrosum. The inherent 
weakness of the aorta at this point does not appear to 
be a factor of primary importance. 

It is not clear therefore, that rupture is due to high 
internal pressure in all cases. Certainly in aortic rup- 
ture due to falls from great heights, the internal pres- 
sure in the aortic arch would be lower than normal if 
the body strikes the ground on the caudal (tail) end. In 
this case, it is more reasonable to attribute rupture to 
mechanical strain. 

Shennan (1928) affirmed that the normal aorta can 
withstand any increased blood pressure due exclus- 
ively to a strongly acting left ventricle. Failure of the 
wall most often occurs by degeneration of various ele- 
ments of the media. 

3. HYPOTHESIS CONCERNING AORTIC RUPTURE 

Wilson and Roome (1933) cited by McDonald and 
Campbell (1945) suggest that injury is most likely at 
the start of diastole when the aorta is fully distended 
with blood, whereas Warfield (1933) (quoted by 
McDonald and Campbell) contends that the impor- 
tant factor is the condition of full inspiration, when the 
heart is caught between the sternum and the fully in- 
flated lungs. McDonald and Campbell support the 
theory of Rindfleisch concerning the importance of fix- 
ation of the aorta in localizing the rupture area. 
McKnight et al. (1964) (quoted by Pate et al., 1968) 
state that it is the aortic arch that is mobile, the des- 
cending aorta being attached to the left anterolateral 
border of the vertebral column. They agree with Rind- 
fleisch only in that points of fixation in general deter- 
mine the zone of concentrated stresses, but differ on 
the ways in which fixation is produced. 

Strassman (1947) presented the findings of 72 cases 
of aortic rupture examined in New York City during 
1936-1942 from a total of approximately 7000 autop- 
sies. The age distribution was from under 10 to over 
80 yr of age. In all cases of spontaneous rupture, the 

tear started within the media. In all cases of traumatic 
rupture, however, the aorta was completely severed, 
making it difficult to determine in which layer the tear 
had begun, although in some survivors the adventitia 
remained intact. It would appear that in some cases of 

._traumatic rupture, the tear begins in the intima. Strass- 
man found that the majority of traumatic ruptures 
occurred at the isthmus where the aorta is narrower and 

:.kelatively fixed by the ligamentum arteriosum. He con- 
,c.luded that the most likely explanation of aortic 
rupture in a few cases in which there was no evidence 
of bone fracture or external injury was the sudden in- 
crease in intra-arterial pressure caused by the blunt 
compression of the aorta against the vertebral 
column. 

Gable and Townsend (1963) found in a study of 459 
cases of fatal injuries of the cardiovascular system 
resulting from accelerative forces, that the aorta and its 
branches were the most commonly involved of all the 
major blood vessels. In fact, the aorta is far more sus- 
ceptible to injury than are the other major blood ves- 
sels. They also affirmed the importance of accelerative 
force in causing cardiovascular injury but were not 
able to choose definitively between that and the 
hypothesis of Rindfleisch (rupture due to intravascular 
pressure). They noted, however, the remarkable con- 
currence of findings among many researchers that the 
highest incidence of injury was just distal to the left 
subclavian artery; i.e. in the region of the ductus, for 
cases of isolated aortic ruptures. When heart lesions 
were present, the incidence of rupture above the aortic 
valve was double that of the ductus region. 

Taylor (1962) has demonstrated on pigs that, during 
acceleration, an emptying of the distal half of the thor- 
acic aorta occurs with engorgement of the upper half 
and of the arch. This retrograde flow may increase the 
pressure sufficiently in the region of the arch to cause 
rupture here. 

Lundevall (1964) has suggested that geometric dis- 
tortion of the aorta in the sagittal plane during decele- 
ration will cause local longitudinal stretching of the 
aortic wall at the two points of fixation; i.e. at the base 
of the heart and at the isthmus. 

In traffic accidents, the contact of the lower portion 
of the steering wheel with the abdomen may push the 
abdominal viscera upwards. The left lung may press 
upward against the aortic arch, causing increased 
bending or even kinking of the arch. A transverse rup- 
ture results near the isthmus. In addition, the cervical 
vessels may stretch during head motion, exerting longi- 
tudinal forces on the aortic wall. Internal pressure in 
the aortic arch may rise suddenly, due both to com- 
pression of the heart and forward inertial motion of the 
blood already in the arch. 
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The equations of motion for the blood and the aortic 

wall are formulated in the next section. Their numeri- 

cal solution in the following section then allows one to 

evaluate the dependence of wall stresses (in terms of 
strain and strain rate) on the magnitude of acceler- 
ation, wall viscoelasticity. and on the geometry of the 
aortic segment as characterized by its length, taper, 

and wail thickness. Calculations are made up to accel- 

eration levels of 150 g in order to evaluate some of the 
current hypotheses described above. 

4. NONLINEAR WAVE PROPAGATION 
IN THE AORTA 

4. I Mathemaricul~brt,lulation 

One adopts a quasi one-dimensional model (Olsen 

and Shapiro. 1967; Rudinger, 1970; Lambert, 1958) for 

the flow of an incompressible fluid in a distensible 

tube. based on the assumptions that (a) the wave length 
is long compared to the tube diameter and (b) that the 

tube is constrained from longitudinal motion. The wall 
material is assumed to be viscoelastic. but fluid visco- 

sity is neglected since its effect on the flow in the larger 

arteries is insignificant. Under these conditions the 
governing equations of motion are 

?,‘I - 
7; + i; (.-lu) = 0 (Continuity) 

ill (‘11 
* 

,it + II ,;; + f- k! = G (Momentum). 
(1 (I 

(I) 

(3 

Here r denotes the time and .Y the distance along the 
axis of the tube (see Fig. I), u the fluid velocity (aver- 
aged over the cross-section), .4 the cross-sectional area. 

p the pressure. /I the constant density of the fluid and 

G the body force resulting from acceleration or a gravi- 
tational field. 

To these equations one must add a relation between 

pressure and cross-sectional area. If the pressure p is 

assumed to be a function of A alone, the resulting dif- 
ferential equations are hyperbolic. admitting discon- 

tinuous solutions (shock waves). In the present study 

for a viscoelastic tube. the pressure depends also on the 

time rate of change of the cross-sectional area, q = 

iA!it. The pressure-area relation is expressed as 

/’ = 1’(A) + G/(.4. to; ty = !; (3) 

where the function .fi.4) corresponds to static loading. 
and the term ~(~4. q) accounts for the viscoelastic 
properties of the wall. g Is a monotonically increasing 
function of 4. with (A.0) = 0. 

With the relation (3) the differential equations take 
on a parabolic character. and mathematical discon- 
tinuities are not admissible. Shock-like transitions may 
develop. however. in the form of very steep (but con- 
tinuous) wave fronts. 

G(t) 

w 
Fig. 1. Geometric idealization of aorta in an accelerative 

force field. 

To complete the mathematical description one 
must specify initial and boundary conditions. For the 

problem considered in this study these are: 

Initial corlditiorl.5 

If(.Y. 0) = 0 

.-I(\-. 0) = A”(\-) 

(4) 

(5) 

The pressure relation employed here (see next section, 
equation 24) implies, for these initial conditions, that 

p(?c. 0) = 0 referred to some base pressure. 

Bounclar~ corldiriorls 

11(0. t) = 0 

(73) 
1r(L, t) = 0. 

The physical reasons underlying the choice of these 
conditions are described in Section 6. 

One .4(x. r) is determined in the above problem. the 

axial strain and strain-rate follow directly. The inside 
tube radius R(r. r) = 1 4(u. r).!n; i whence 

and 
i, = ?qCr 

The initial value of the axial strain has been neg- 

lected in the above expression. since it is negligibly 

small. In fact. the intial radius of the tapered tube is 
given as R = R,e -“‘0225x. from which one may esti- 
mate e,(r = 0) = 2.5 x IO-“. a value too small to 

appear in Figs. 4-6. 

4.2 Nttfwrical solutim 

Equation (4.2) may be written as 
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where 

84 
1X= -G. 

The set of equations (1 and 9) is in conservation 
form, and therefore the numerical solution may be 
based on the Lax-Wendroff difference scheme (Richt- 
myer and Morton, 1967). 

Without performing a rigorous stability analysis of 
the set of equations (1,3 and 8) it appears sufficient to 
impose two stability criteria relating to both the hyper- 
bolic and parabolic aspects of the equations. The time 
interval for integration is determined at each step as 
the more restrictive of the two, and has been found 
satisfactory in all cases computed. 

The hyperbolic stability criterion may be expressed 
as 

At = (emax 
u c 

(10) 

where c is the speed of sound based on the pressure- 
area relation for static loading 

cz = A df(A) 
P dA 

(11) 

and 1 is a constant < 1. In our calculations i was taken 
equal to f. This condition implies that the time step 
should not be larger than one-half the transit time for 
a wave propagating through a particular calculational 
cell. 

The parabolic stability criterion is based upon the 
following deviation. First one defines a new variable 

F = Au (12) 

and writes the differential equation in terms of A and 
F. The continuity equation becomes 

A, + F, = 0. (13) 

The momentum equation is multiplied by A and is 
added to u times the continuity equation (13). This 
gives 

F, + ; + c2(A)A, 
(> x 

1 
= 0 (14) 

where the constitutive relation (3) has been used to eli- 
minate p. The quantity qX may be expressed in terms 
of F using equation (13) as 

so that equation (14) becomes: 

F,-(!&xx+(;), 

+(?(A)+ ;z)A,=O. (15) 

The form of this equation is obviously similar to that 
of the heat equation. if one disregards the last two 
terms. The parabolic stability criterion is given by 
(Richtmyer and Morton, 1967, pp. 195,205) 

aAt 1 
z<j (16) 

where 

A &(A, rl) 

“=PT. 
(17) 

Alternatively, it is possible to formulate the flow prob- 
lem in terms of a single function rj, defined from equa- 
tion (13) by 

tj,= A, $,= -F. (18) 

The resulting third-order differential equation for r/j 
follows from equations (15 and 18). Although this form 
was not used here, it may be of interest in devising 
other computational schemes. 

The governing differential equations (1 and 8) are 
written in difference form, according to the two-step 
Lax-We&off scheme, which is known to possess use- 
ful properties of stability: 
Step I 

A;,+:(; = ;(A;+1 + A;) -; g[(Auy;+, - (Auy’j 
(19) 

r&::i: = ;(U;+, + u;, - ; A;($+, - qq) 

where 

q= ; +P 
0 P 

+ C#J and q; is defined by 

47 = 
0 
f ‘,+ 
- .I 

&Xj, P) + f [f(A’j) + g(A’j, v~)I 

and 

Step II 

VJ = (A; - A; - ‘)/At. 
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and 

The ,j subscripts indicate intervals in distance .x along \ 
the tube, while the II superscripts denote the time inter- 

val. 
The initial and bondary conditions (4-7) are simply 

states as: 

II:, = 0 

,47 = ,~,(.Y~);.Y~ = (j - l)hr 

?I:’ = 0 

u;l = 0 (21) 

1/y = 0 

U’J,, = 0. 

Where the indices j = 1 and j = jm denote the ends 

Y = 0 and x = L, respectively. At the end points, Step 
11 must be modified as follows: 

The system is integrated in a step-wise marching 

procedure in time. The initial values of equations (21) 
are used to evaluate the right-hand sides of equation 

(19). from which one obtains the new values of A and 

u at the next half time step for each position s. These, 
in turn, are used to evaluate the right-hand sides of 

(20), which then yield the values of A and u advanced 

to the full time step. Relations (22) are used to deter- 

mine u, A at the proximal and distal ends of the aorta 
at each time step. One then returns to the first step and 
continues in time. 

5. CONSTITLTIVE MODEL FOR AORTA UNDER 
DYNAMIC LOADING 

Generally, soft tissue and muscles behave as non- 
linear viscous materials whose stiffness increases with 

increasing strain-rate. For the dynamic loading rates 

associated with thoracic impact, it appears that the in- 

fluence of strain-rate on resulting tissue stresses is of 

paramount importance. Measurements of Collins and 
Hu (1972a) for fresh aortic tissue have resulted in a 
dynamic stress-strain relation, valid for strain-rates up 

to 3.5 set _ ’ in the form 

(T = 0.38 x 10h (1 + 0.644) (e’ ” - 1) dyn/cm’ 

(33) 

where the strain-rate i is measured in inverse seconds. 

For an isotropic material, one may deduce from the 

above expression a relation between the transmural 
pressure (p - pO) and the intraluminal cross-sectional 

area A. 
The true strain is defined by 

E = ln g = 4 ln : 
0 II 

where L is the extended length of an elemental seg- 

ment, and L, its original length. 

From the force balance on a thin cylindrical element 

of thickness h. the transmural pressure is given by 

ah 
P-Po=R 

where R is the radius of curvature of the element. 

Using a Poisson ratio of one-half (isovolumetric defor- 
mation) which is typical of soft biological tissue 

hR = H,R, 

whence 

where 

P - PO = Apz = ft.4 + g(A. A, w 

and 

y(A, A) = Blf(A)I i- : B = 0.322 sec. 

In the above expression for f(A). the multiplying fac- 
tor has been determined from the definition for sound 

speed in a distensible tube 

C’= Adf’ 
0 

( ) P dA ,,:A,, 

where p is the constant fluid density. 
The absolute modulus appearing in the function g 

has been added to deal with the range of wall deforma- 
tion in which AJA, < 1. so that the condition of in- 
creasing stiffness at increasing strain-rate (g > 0 for 

.4 > 0) may be maintained even if the aorta should con- 
strict below its rcferencc cross-sectional area A. This 
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‘reflection’ of the stress-strain curve for A/A, < 1 strain-rate i,. Thus, stress-strain data at low tempera- 
appears reasonable in the absence of other experimen- ture may be interpreted as data at high strain-rates. 
tal data. The variation of sound speed c0 and reference However, even here, published experimental data pre- 
cross-sectional area A, with distance x along the axis sently available are not grouped suitably to carry out 
of the vessel may be given in the form such a conversion. 

co(x) = Ci(l + &X) (25) 

A&) = Ai exp(- 0) (26) 

where the parameters have been estimated by Anliker 
et al. (1971) as Ci = 300cm/sec, fil = @02/cm, p2 = 
0045/cm for dogs aortae, and Ai = n cm2 in exper- 

iments of Hanson (1970). 

A more promising approach was found in the work 
of Smith (1962) who measured stress-relaxation data 
at large strains for certain elastomers. He showed that 
the time and strain dependence are separable, so that 
a constant-strain-rate modulus E(t) may be introduced 
in the form 

E(f) = 
H(E) c (6, t) 

E 
However, for large decelerative fields, the strain-rate 

may well exceed the maximum value of 35 set- ’ of the 
experiments of Collins and Hu by 14 decades (10”‘). 
To the knowledge of the authors, no data are availabIe 
in that range of strain-rate which could serve to guide 
the extrapolation of the test results. One must then 
turn to other sources of data. It is known that an equi- 
valence can be established between tensile tests at high 
strain rates and those at low temperatures. 

and the time t required to reach the selected strain at 
each strain-rate is obtained as e/i. The experimentally 
determined relation of Collins and Hu, is quite fortui- 
tously of the same functional form, for large E, with 

E(r)=f+(+ 1 

0.18(e1Zc - 1)’ 
(24) 

When a viscoelastic material is stretched at a par- 
ticular rate, two competing process act to determine 
the stress-time response: (a) the progressive deforma- 
tion of internal bonds, which tends to increase the 
stress and (b) a continuous relaxation which alleviates 
the stress. If the material is strained slowly (and at high 
temperatures) the relaxation process is very rapid rela- 
tive to the time scale of the deformation, and a con- 
tinuous equilibrium is maintained. However, the 
departure form equilibrium becomes progressively 
greater as the test temperature is decreased, or the 
extension rate is increased. At high strain rates or at 
low temperatures, the material cannot accommodate 
rapidly enough to reach a continuous state of equilib- 
rium. The effective stiffness of the material increases as 
one departs from the equilibrium state by either of 
these means. The availability of stress-strain data at 
low temperatures and low strain rates (e.g. Polmanteer 
et al., 1952) tempts one to deduce from them the corre- 
sponding stress-strain response at high strain rates 
and normal ambient temperatures. 

Now we wish to extrapolate the measured relation 
through 1-f decades (10“5) of c up to -lOOsec-‘. 
Then according to Smith, the function N(E) is indepen- 
dent of time, and hence strain-rate divided by strain, 
provided one remains within the time span represented 
by the experimental data. That is, the function H(E) 
should not change its form. even at higher strain-rates. 
The relative invariance of H(E) with time has been 
observed for a number of amorphous elastomers (e.g. 
styrene butadiene rubber vulcanizate and NBS poly- 
isobutylene) where H(e) depends only on strain over 
about 3 decades of time for temperatures between 
-42.8 and 93.3”C. 

Since the measured stress-strain relation of Collins 
and Hu (1972), which was based purely on experimen- 
tal results. just happens to possess the same functional 
form of Smith, it is quite justifiable to broaden its vali- 
dity directly to higher strain-rates by virtue of the 
above described properties of Smith’s function H(t). 
The experimentally determined relation is therefore 
used in its original form in the numerical solution of 
the general equations of motion. 

A method for doing this has been described by Mac- 
gregor and Fisher (1946) and summarized in the book 
by McClintock and Argon (1966). The result may be 
stated simply: the stress corresponding to a test at an 
arbitrary strain-rate i and an arbitrary temperature T 
will be the same as for a test at the strain-rate i, and 
temperature T(1 - k log, i/to), where k is a constant. 
That is, if the stress corresponding to strain-rate c and 
temperature T is plotted against the modified tempera- 
ture abscissa T(l - k log, +,), the resultant curve will 
coincide with the stress versus temperature curve for 

6. RESULTS AND DISCUSSION 

A number of examples were computed with a view 
to illustrating the dependence of strain and strain-rate 
(and hence wall stress) to: (a) the magnitude of the vis- 
coelasticity of the wall. (b) the amplitude and duration 
of the acceleration history. and (c) the length and taper 
of the tube. 

The geometry of the aorta and its idealization into 
a straight tapered segment is shown in Fig. 1. The 
aorta is subjected to an accelerative field directed from 
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the thoracic aorta towards the aortic arch, correspond- 
ing to the type of decelerations measured by Hanson 

(1970) in which a series of anesthetized beagle dogs was 

exposed to head-first impact (-G,) over a range of 5- 
60G. Such accelerations occur in humans during, for 

example, a head-on vehicular collision in which the 
passenger is pitched forward over the steering wheel, 

his back becoming horizontal, and parallel to the di- 

rection of motion of the vehicle. The abrupt deceler- 
ation caused forward motion of the blood in the de- 

scending aorta towards the aortic arch. 
A typical acceleration-time history is depicted in 

Fig. 8, the shape of which may be very closely approxi- 

mated by two sine curves of equal amplitude (at time 
t,j but differing wave length, with total duration t = T. 

In equation (9) on may express 

c-‘ci, _-= 
2.x 

-G(r) 

r sin 4 i for t < t, 

= -G, 

i 

i L, 

7l t-tt, 
CO5 ~ __ for t, < t < 7 

2T-t, 

according to the measurements in Hanson’s exper- 
iment 4F. The parameters T, r,,, and G, are approxi- 
mated by 

T = -19.5 ms. f, = 17 ms. 

G, = SO g = 49.050 cmlsec’ 

Hanson gives measurements of the acceleration. 

intra-aortic pressure, and intrapleural pressure as a 
function of time. From the latter two, one may calcu- 

late the transmural pressure across the aortic wall. 

Measurements of intrapleural pressure are particularly 

susceptible to error as a result of stress concentrations 
which may develop around the embedded pressure 

transducer (see Collins et al., 1972b). However. know- 
ledge of the transmural pressures is essential for com- 

parison with the analysis of the stresses which develop 
in the aortic wall. The results of the impact exper- 

iments of Kroell et al. (1971) are therefore of very 

limited use in this respect. since intrapleural pressures 

were not recorded in their work. 
The physical behavior of a fluid-filled viscoelastic 

tube is portrayed in Figs. 2-7, in which Hanson’s ex- 
periment with dog No. 4 and acceleration pattern F 
(see his Fig. 6) was computed using his initial data, as 
a means of checking the present analysis. For this pur- 
pose, it was found that the value of B = 0.08 set was 
more appropriate for dog’s aortae, as will be described 
shortly, than the value of B = 0.322 set (equation 24) 
as implied in the Collins and Hu experiments with pigs 

‘I 
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Fig. 2. Calculated variation of inside radius of aorta for 
Hanson’s experiment 4-F. with B = 0.08 sec. 

and human aortae. The initial taper of the aorta is 

plotted in Fig. 2 for time t = 0. For later times (with 

B = @08 set), a rapid change in cross-section indicates 
the formation of a shock wave reflecting from the fixed 

end x = 0 and travelling to the right in the counter- 
direction to the blood flow. This steepening of the 

slope of the aortic wall leads to high axial stresses and 

strains which may eventually culminate in transverse 
rupture of the aorta. The corresponding fluid velocities 

(directed to the left) are shown in Fig. 3. Their position 
of steepening corresponds to that of the wall steepen- 
ing of Fig. 2, and appears to confirm the existence of 
a ‘shock’ front in the flow. Behind the front. the flow 

velocity reaches a plateau at early times, and is gradu- 
all! altered as the effect of the boundar) condition at 

s = L transmits its influence towards the aortic root. 
The experiments of Hanson do not reveal the correct 

boundary condition at I = L: however. it appears 

plausible to take I&L, t) = 0 since the vascular bed can- 

not respond rapidly to a 50 msec event. Furthermore. 
such bondary condition corresponds closely to the 

classic steering wheel impact (Beck. 1935). in which the 

steering wheel of the colliding vehicle penetrates into 
the lower abdomen of the driver. as he is subjected to 

a head-first deceleration. It is observed in Fig. 3 that 

the peak velocity decreases after 26 ms. The distribu- 

tions of axial wall strain and strain-rate along the 
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Fig. 3. Calculated variation of blood velocity for Hanson’s 
experiment 4-F, with B = 0.0X sec. 
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Fig. 4. Calculated variation of axial wall strain for Hanson’s 
experiment 4-F, with B = 0.08 sec. 

length x of the tube are plotted in Figs. 4 and 5, reveal- 
ing peaks which again correspond to the passage of the 
shock. Axial strain-rates are seen to diminish after 
26 msec, as did the peak fluid velocity. Figures 6 and 
7 show the time variation of the maximum values of 
strain and strain-rate over the tube length. It is to be 
noted that the curve of Fig. 7 is not simply the slope 
of the curve of Fig. 6, since the maxima of E, and i, do 
not necessarily correspond to the same x-positions at 
a given time t. The maximum value of + occurs at about 
27 msec, preceding the maximum strain by about 
5 msec. 

Calculations of the transmural pressure at x = 0 as 
a function of time (Fig. 8) show a definite sensitivity to 
the value of the viscoelasticity B. For B = 0.08, the 
amplitude of the pressure variation, and its phase lag 
relative to the acceleration curve, closely matches the 
experimental results of Hanson for dog No. 4-F, once 
the origins have been made to coincide. Computations 
with this value of B also lead to reasonable agreement 
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Fig. 5. Calculated variation of axial strain-rate for Hanson’s Fig. 7. Variation of maximum strain rate for Hanson’s ex- 
experiment 4-F. with B = 0.03 sec. periment 4-F. with B = 0.08 sec. 
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Fig. 6. Variation of maximum wall strain with time for 
Hanson’s experiment 4-F, with B = 0.08 sec. 

with the one other Hanson experiment calculated, run 
4-C, and appear to lend adequate credence to the pre- 
dictive ability of the present analysis and numerical 
scheme. Again, note is taken of the inherent inaccura- 
cies associated with the difficult measurements of in- 
trapleural pressures (Collins et al., 1972b). 

The transmural pressure is shown (Fig. 9) to be quite 
sensitive to even very slight tapering of the aorta; it is 
clear that the aortic taper must always be reported if 
associated experimental results are to be interpreted 
meaningfully. 

The maximum values of the strain and strain-rate 
over both x and t are shown in the semi-logarithmic 
plot of Fig. 10 to be much more sensitive to variations 
in viscoelasticity B than is the transmural pressure. In 
fact it would appear very worthwhile to formulate an 
experimental procedure for determining the unknown 
visoelastic properties of materials on the basis of shock 
experiments in which axial strains and strain-rates are 
recorded. As the viscoelasticity decreases, the shock 
steepness increases, with concomitant increases in the 
local strain and strain-rate. 

The remaining calculations were carried out with a 
value of B = 0.12 s instead of B = 0.08 s for the sake 
of economy, as the computational time, which in- 
creases markedly for decreasing B, doubles between 
these two values. The results for B = 0.12 s are equally 
indicative of the sensitivity of E, and i, to changes in 
the acceleration. 

The maximum strain and strain-rate depends very 
critically upon the level and duration of the acceler- 
ation. For a constant duration 49.5 msec. which is 
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Fig. 8. Accelerations and intra-aortic pressures: (i) Accelcr- 
ation: ~ measured by Hanson (experiment 4-P); - 
as approximated here by function G(t); (ii) Calculated 
pressures for various R. compared with -_ _-- curve mea- 

sured by Hanson (Experiment 4-F). 

quite typical of automobile acidents in which aortic 

rupture occurs, Fig. 11 depicts a smooth monotonic in- 

crease of E, and i, with acceleration within the range 

of 255lOOG. It is clear that the total kinetic energy 

expended in the impact also increases with G if the 

duration is held constant. In Fig. 12, the variation of 

E, andi, with acceleration has been calculated for con- 
stant initial impact velocity 144 = $ Gdt z 15.7 m/s 
and appears to be almost linear. In this case, higher 
levels of accelerations are applied over shorter periods 

so that the kinetic energy of impact remains constant. 
These results arc useful in the design of vehicles and re- 

straint systems to protect passengers in a collision 

from a specified initial velocity. Representative data on 
aortic rupture strengths. when available. will permit 

one to set definite tolerance levels on impact velocities 
and acceleration levels. 

7. CONCLUSIONS 

This investigation provides the first detailed theor- 

etical and numerical treatment of the dynamic re- 

sponse of an aorta to strong decelerative force fields 
yet known to the authors. and bears directly on the 
phenomenon of traumatic rupture of the aorta. 

Fig. 9 Influence of \call taper on intra-aortlc pressure for 
Hanson’s experiment 4-F. with B = 0.12 see. 

Fig. IOa. L’ariation of axial strain-rate with \iscoelasticlty 
for Hanson‘s esperimcnt 4-F 

B (SW) 

Fig. lob. Variation of axial strain with vlscoelasticlty for 
Hanson’s experiment J-f. 

The equations governing the wall and fluid motion 

are solved in conjunction with a measured stress- 

strain-strain-rate relation for the aorta obtained by 

Collins and Hu (1972a). Reasonable agreement with 
the experimental results of Hanson (1970) for deceler- 

ating dogs is shown for an appropriate value of the vis- 

coelasticity parameter. However, the formulation and 
numerical solution by a Lax-Wendroff differencing 

scheme are sufficiently general to apply to a wide var- 

iety of materials and force fields with only minor modi- 

fication. The numerical scheme has been found to be 

very stable when the stability criteria outlined above 

are adhered to. Periodic global checks on the fluid 

volume confirm its invariance to within 0.3 per cent 

throughout all calculations presented. 
This study would indicate that aortic rupture may 

occur, when a subject is placed in a large decelerative 

or accelerative force field. by formation of a shock 
wave travelling along the aorta. The axial strains and 
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Fig. lla. Variation of axial strain rate wtth peak acceler- 
ation for constant duration T = 49.5 msec. H = 0.12 sec. 
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Fig. I lb. Variation of axial strain with peak acceleration for 
constant duration 7‘ = 49.5 msec. R = 0.12 sec. 
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Fig. 12a. Variation of axial strain-rate with peak acceler- 
ation for constant SGdt = 15.7 m/set, B = 0.12 sec. 
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Fig. 12b. Variation of axail strain with peak acceleration for 
constant [Gdt = 15.7 mjsec, B = 0.12 sec. 

strain-rates of the aortic wall reach elevated values 

behind the shock front, and may well lead to stresses 

approaching the rupture level. All observed ruptures 

are transverse, accounting for an estimated 16 per cent 
(Greendyke, 1966) of all automobile fatalities in the 

United States. 
In conjunction with better data on me ultimate rup- 

ture stress of the aorta, the present analysis will pro- 

vide the levels of velocity and acceleration sufficient to 
produce such rupture. Tolerance levels so obtained 
will find direct application in the design of vehicles and 

passenger restraint systems for human safety. 
It has become increasingly apparent through this in- 

vestigation that the high sensitivity of strain and 

strain-rate to small variations in the parameters char- 

acterizing the viscoelasticity of the wall material may 

well afford a useful means of determining material 

properties by careful shock wave experiments. 
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