
 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 1 of 19 June 2004
and Dr Stephen Castell

The Benefits of ODR in Complex Software Contract Disputes

Using the Forensic Systems Analysis methodology to arrive at and present
an expert opinion for Online Dispute Resolution purposes

by

Dr Stephen Castell*

Chartered IT Professional

Chairman, CASTELL Consulting
Member of the Expert Witness Institute

Committee Member, British Computer Society Law Specialist Group
__

Paper presented at the Third Annual Forum on Online Dispute Resolution, hosted by the International
Conflict Resolution Centre at the University of Melbourne, Australia, 5-6 July 2004, in collaboration with the
United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP); Day 2, Tuesday 6 July

2004, Workshop Streams 14.00-15.30, ‘Applications of ODR – Commercial Disputes’.
__

Summary

Software implementation contracts are frequently terminated with the software rejected
amidst allegations from both supplier and customer, e.g. software/database
errors/deficiencies, faulty design, shifting user/business requirements. An important technical
issue on which the IT Expert appointed in such disputes is asked to give an expert opinion is:
what was the quality of the delivered software and was it fit for purpose? ODR can bring
benefits in presenting the objective findings of the IT Expert through online demonstration of
the results of Forensic Systems Analysis, providing dramatic insight into the state of the
software, saving time and costs, and facilitating settlements.

Introduction – Features of IT Disputes

Those who have been involved in litigious disputes over failed computer software projects would readily
agree that, whatever their size in terms of the financial amounts at stake (and whatever the facts and
circumstances of the contract between the parties, and the conduct of the subsequent software
development) software construction and implementation cases present interwoven technical and legal issues
which can be both arcane and complex – and therefore prove costly and time-consuming to unravel.

CASTELL Consulting, an independent professional IT consultancy, founded in 1978, has been involved in a
wide variety of such complex computer software litigation [1]. We have in particular been instructed as
expert witnesses (in e.g. the UK, Europe, the Arabian Gulf, Australasia, the USA) in many legal actions
concerning major software development contracts which have been terminated, with the software rejected
amidst allegations of incomplete or inadequate delivery, software errors, shifting user specifications, poor
project management, delays and cost over-runs. This work has been on behalf of Claimants and
Defendants, software customers and suppliers, in the High Court (or equivalent), Arbitration, Mediation and
other forms of ADR. In addition, I have personally acted as an ICC Arbitrator, and CEDR-trained Mediator;
and as Technical Assessor to an International Arbitrator (in a Hong Kong case for tens of millions of US$), in
a role similar to that which, under the recently introduced English High Court Civil Procedure Rules, has
become increasingly familiar to many UK IT expert witnesses – being appointed Single Joint Expert (‘SJE’).

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 2 of 19 June 2004
and Dr Stephen Castell

Forensic Systems Analysis

Over the years of examining mixed and varied software development disputes as appointed experts,
CASTELL has developed a range of techniques for assessing and reading the ‘technical entrails’ of failed,
stalled, delayed or generally troublesome software development projects. It should be noted that such
projects can these days often be a contractually uncertain mixture of ‘customised’ software packages and
‘bespoke’ construction. Many articles and papers have been written as a result of such experiences [2].

This CASTELL inquisitorial method, Forensic Systems Analysis [3], focusing as it does on testing of the
software in dispute, is I believe capable of being developed into a protocol for presenting the objective
findings of the IT Expert in the context of Online Dispute Resolution. I believe that, through online
demonstration of the results of Forensic Systems Analysis, the IT Expert can provide illuminating and
dramatic insights into the state of the software in dispute, and contribute mightily to saving time and costs
in, and facilitating rapid settlement of, such technically complex disputes.

Furthermore, such techniques of Online Dispute Resolution and Forensic Systems Analysis could, I suggest,
be used not merely in a dispute context, but also to assess the fragile status and troublesome characteristics
of specific ‘problem software projects/contracts’ before they stall, fail, or sink into litigation; and, more
generally, as a positive and rigorous ‘litigation sensitive’ Software Quality Assurance and Project
Management Audit Method for large software construction and implementation projects, throughout their
conduct. I do not, however, explore these further aspects and benefits in this short paper.

I here outline just some of the Forensic Systems Analysis components relevant to expert investigation in
typical civil litigation over failed software development contracts, the application and findings of which could,
I believe, with great benefit be presented online for Online Dispute Resolution purposes. [Further details will
be available on a future website www.ForensicSystemsAnalysis.com].

Software ‘quality’

The most common, and arguably most important, issue on which the computer expert is inevitably asked to
give a view in software development or implementation cases is: what was the quality of the delivered
software and was it fit for purpose ? This raises the question of: just what is meant by ‘software quality’ ?
The ready answer from the experienced IT expert is that ‘quality’ can only mean ‘fitness for purpose’, in the
sense of ‘does the delivered software meet its stated requirements ?’. Thus:

(1) ‘Quality’ of software is a concept which is essentially dependent on the specification of what the
software is expected to do and how the software is expected to perform in its defined environments. In
other words, the yardstick for measuring and judging whether software is of appropriate quality and fit for
its intended purpose is the Statement of Requirements defining what is required or expected of it; and

(2) Testing software against its Statement of Requirements is the only practical and universally
accepted method of judging the quality of the software and whether or not the software is fit for its
intended purpose.

This critical focus on testing the software in dispute against its Statement of Requirements has a different
emphasis for different specific cases.

For example, in a case concerning an in-store EFTPOS system for a major national retailer, the crucial issue
was whether or not the software supplier was likely to have fixed many outstanding errors and have had the
system ready to roll-out in time for the pre-Christmas sales rush. What was the objective technical evidence
of the software house’s ‘bug find and fix’ performance ? Were the bugs escalating, or was the software
converging onto a stable, performant system ? Were, rather, the constant changes in customer specification
– as alleged by the supplier – perhaps to blame for the delays and inability of the software to pass a critical
acceptance test ?

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 3 of 19 June 2004
and Dr Stephen Castell

A case concerning a large University Consortium similarly focused on the apparent inability of the software
developer to present a main module of the software system in a state capable of passing formal Repeat
Acceptance Tests, with a number of faults appearing at each attempt at ‘final’ testing (even though three
earlier main modules had been successfully developed and accepted). How serious were these faults, and
were earlier faults that had been thought to have been fixed constantly re-appearing ? Was the customer
justified in terminating the contract on the grounds of a ‘reasonable opinion’ that the software supplier
would not resolve all the alleged faults in a ‘timely and satisfactory manner’ ? Was the supplier’s counter-
claim for a large financial amount for ‘software extras’ valid, and could that explain the inability of the
software to converge onto an ‘acceptable’ system ?

In another case – that of a real-time computer-aided mobilising system for a large ambulance brigade – the
focus was on the response times of the software in a clearly life-or-death application. How well were the
desired response, availability, reliability and recovery targets for the software contractually defined, and
what was the evidence of the system’s actual performance under varying load conditions ?

Testing Incident Reports

The computer expert witness – often coming onto the scene of the failed project many months, sometimes
years, after it has all collapsed – is usually presented with large volumes of project documentation, an
important element of which is the set of software testing records. Typically, these are in the form of Testing
Incident Reports (‘TIRs’), and they can run into many hundreds, if not thousands or tens of thousands, for
large-scale bespoke software development contracts.

To simplify, the dispute may then come down to this. The customer alleges that the TIRs represented
errors in the software which were critical, serious, incapable of being remedied, too numerous in number, or
in some other way, or ways, either were, or summed up to, a material breach of the contract by the
software supplier, entitling the customer to reject the software and terminate the contract. The software
vendor/developer, on the other hand, retorts that the TIRs did not constitute ‘showstopper’ faults, they were
readily technically rectifiable, and anyway principally arose from the many and continuous changes in
specification made by the customer – the customer was not entitled to terminate and had himself repudiated
the contract in so doing.

The Forensic Systems Analysis Methodology: EFLAT, EAT and FORBAT

The expert hired by either of the parties in the dispute (or as an SJE) may address these issues using a
number of Forensic Systems Analysis components, the most important of which, for the purposes of realising
the presentational benefits of ODR, are likely to be EFLAT, EAT and FORBAT, outlined as follows.

EFLAT – Expert’s Fault Log Analysis Task – Material Defect

During software development defects are routinely encountered, and routinely fixed, and there is generally
nothing alarming about their occurrence. For the purposes of rejection of software and termination of a
software development contract, any alleged defect must therefore be assessed using a strict test as to
whether or not it is truly a material defect, that is, as to whether or not ‘the contract cannot be
considered to have been performed while this defect persists’.

EFLAT, developed over the years through careful debate with many firms of instructing solicitors, and
learned Counsel, uses what I believe is a sound protocol for testing whether or not any given software fault,
in terms of its relevance to a breach and termination of a contract, is truly a material defect.

This protocol is essentially that, to be a material defect, an alleged software fault must be

(1) of large consequential (business) effect; and
(2) impossible, or take (or have taken) a long time, to fix; and
(3) incapable of any practical workaround.

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 4 of 19 June 2004
and Dr Stephen Castell

The customer is quite properly entitled to define what is a ‘large’ consequential business effect; and the
supplier, equally, may put forward an appropriate sizing for a ‘long’ time to fix – each from the standpoint of
his own business/technical knowledge and experience, and in the context of the particular contract/project.
Both views ought to be evidentially supportable. Both views – and, also, whether or not there is indeed a
practical workaround – would be the subject of expert scrutiny and opinion.

EFLAT constitutes a careful re-running of the appropriate Acceptances Tests, under expert observation, with
each TIR (or ‘Fault Log’) raised during the test rigorously and dispassionately assessed according to the
material defect rule. The outcome is a Scott Schedule (of Software Defects) with each fault particularised,
stating why each was considered a breach of contract (by reference to specific contractually defined
requirements), what the consequential effect was estimated to be, what the technical time to fix was (or
was estimated to be), whether or not there was any practical workaround available; giving the expert’s
independent view on all these individual elements, with, finally, an opinion as to whether or not the specific
fault in total was a material defect. A pro-forma for the Scott Schedule (of Software Defects) is given at
Annex A hereof, and such a pro-forma is, I believe, readily adaptable to being presented, for example via
(updatable) web pages, in the context of Online Dispute Resolution.

EFLAT is undertaken with a ‘prototyping’ orientation, assessing first only a limited proportion of the TIRs, so
that experience may be gained as to how difficult the full task is likely to be, how long all the TIRs will take
to assess, and whether there may be technical obstacles in, say, reproducing the exact conditions of the
Acceptance Test corresponding to those which obtained when the alleged faults were originally found. Not
the least of these obstacles can be the basic evidential uncertainty over whether or not the version of the
applications software and/or the database configuration and/or the hardware and systems software
environment available to the expert (months or years later) precisely correspond to the system being
litigated over.

Obstacles apart, early prototyping of EFLAT enables estimates of how much time (and therefore cost) is
likely to be needed to complete the Scott Schedule (of Defects) in its entirety, enabling clients and
instructing solicitors to take a considered view as to the full extent of expert investigation to be
commissioned. Once again, such estimates, properly presented and shared through e.g. controlled web
‘publication’, should be of great benefit in the conduct and costing of an Online Dispute Resolution.

EAT – ‘Extras’ Analysis Task

It can be that, in software development projects of any significant size, there are many ‘contract variations’
caused by the inevitable shift in the customer’s or users’ perceptions of what they require as, for example,
they see the software actually being built and tested. This ‘specification drift’ or ‘constant changes to
requirements’ is a well-known phenomenon in almost all engineering construction disciplines and presents a
particular challenge to well-ordered project management, to ensure that such variations are at all times
properly documented and controlled, and that both parties understand and agree the impact on project
scope, timetable and costs which implementing all requested software changes could have.

Typically, for the software systems project which collapses and ends in dispute or litigation, the computer
expert witness is asked to give opinion on whether or not there were indeed changes from the originally
contracted software; and, if so, what was the quality of the additional software built; and to what financial
remuneration (e.g. on a quantum meruit basis) the supplier may be entitled for providing such software
‘extras’.

EAT comprises a methodical analysis of (1) the contractual documentation (in particular the Statement of
Requirements, including any amendments or re-issues thereof during the project); (2) the work records of
the software engineers who did the construction of the ‘extras’; (3) the items of software design, source
code, functionality, execution and performance which it is alleged have been produced as a result of all this
extra work; and (4) the financial amount claimed, and if it is consistent with (1)-(3) and passes a ‘sanity
cross-check’ such as that provided by assessing the “£ or $ per delivered line of source code’ standard
software metric.

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 5 of 19 June 2004
and Dr Stephen Castell

A pro-forma for the resulting Scott Schedule (of Software Extras) is given at Annex B hereof. Once again, a
‘prototyping’ methodology is used to give client and instructing solicitors an early reading as to the likely
time and costs needed to reach a complete opinion on all items of software ‘extras’ claimed. And, once
again, such a pro-forma and its associated insights are, I believe, readily adaptable to being presented with
great benefit in the context of Online Dispute Resolution.

FORBAT – FORensic Bug Analysis Task

Always recognising that during software development defects are routinely encountered, and routinely fixed,
and there is generally nothing alarming about their occurrence, the overall numbers of such ‘bugs’ (as
logged by the TIRs), and the pattern of their build-up and resolution, are nevertheless important indicators
of the progress of software construction and testing.

Such indicators are unfortunately often misread by both the software customer and the software developer:
in particular, the dramatic increase in TIRs and apparent ‘never-ending increase in bugs’ during systems
testing can be badly misinterpreted. The point is that systems testing (usually the responsibility of the
software developer) is meant to find bugs and fix them – it is not being done properly if there is not a large
build-up in recorded TIRs. This contrasts with acceptance testing (usually the responsibility of the customer)
where ‘zero’, or only a small number of non-serious bugs, is a not unreasonable expectation, particularly as
acceptance testing should be undertaken with the appropriate attitude - for acceptance, not rejection of the
software proffered for testing.

FORBAT uses a number of standard quantitative analysis techniques to give an objective graphical
presentation of the true ‘bug find and fix’ performance of the software house, readily understandable, with a
little explanation, to non-technical clients, lawyers or judges. The insights which spring out of these
presentations are usually vivid (and incidentally can come as something of a surprise to the parties
themselves). These are best explained by two examples, both taken from a real software project:

Illustrations of typical FORBAT ‘bug find and fix performance’ graphs; and conclusions reached

Graph 1: “Work in Progress”

“Graph 1 represents the cumulative number of TIRs outstanding at any point in time, and is formed by
subtracting the cumulative total number of resolved TIRs from the cumulative total number of reported
TIRs on a day-by-day basis. A trendline has been added to the graph to indicate the overall tendency
of the underlying data, but otherwise the graph is an objective portrayal of basic project statistics.
From this graph it can be seen that the number of outstanding TIRs peaked at more than 200 before
the release of Version 4, but that these outstanding TIRs had been addressed and resolved, with the
exception of fewer than 20, by the time Version 4 was released. This is in keeping with what would be
reasonably expected if the software house were efficiently handling the ‘errors’ reported, eliminating

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 6 of 19 June 2004
and Dr Stephen Castell

as many bugs as possible before releasing a new version of software. The steep drop-off in the number
of outstanding TIRs from day 300 to day 320 is an indication of a significant amount of work performed
to address and resolve outstanding TIRs prior to release of a new version of the software. The inferences
to be drawn from this graph and its underlying data are: for each major release of the software
(i.e. Versions 4, 5, 7 and 8):

1) the total cumulative number of outstanding TIRs decreased steadily from more than 200, to less

than 100, to less than 50 to around 45;
2) the total number of outstanding TIRs reduced sharply before each software release (notice the steep

drops in the curve before each major release, indicating a ‘clean-up’ process prior to each release);
3) the total number of outstanding TIRs for each major release decreased from less than 20, to less

than 10, to less than 5, to zero.

These results are consistent with what is reasonably to be expected in a well-run software development
project environment. It is usual in such an environment to see a build-up of reported ‘errors’ or ‘bugs’
during systems testing as a major release approaches. It is also usual to see a steep drop-off in the
number of these bugs outstanding just before each major release. In summary, Graph 1 illustrates that
the process to ‘find and fix bugs’ was one in which the software house became increasingly proficient;
and indicates that the software itself was becoming more and more stable.”

Graph 2: “FIX TIME: Scatter with Logarithmic Trendline”

“Graph 2 depicts all TIRs in scatter format. Each individual TIR is plotted on this Graph at the point
in time that it was reported versus the elapsed time in days that it took to resolve it. A logarithmic
trendline has been calculated based upon the distribution of the base data used, with the resulting
equation indicated in the upper right hand portion of the Graph and the trendline itself superimposed
on the data. This trendline indicates an overall tendency of the data points plotted. Additionally, a
‘worst case trendline’ has been drawn on this Graph (the dotted straight line running from the upper left
hand side of the diagram to the lower right hand side). This ‘worst case trendline’ uses the outlying
data points to provide an indication of where the trend is going from the ‘worst case’ perspective.

Looking at the ‘worst case trendline’, its steep slope may be noted. It appears that it would intercept
the X-axis near project day 550, or 1½ months after the project was terminated. This extrapolated
interception, which would have constituted a modest further elapsed time in the context of a software
project which had already been running for over 18 months, corresponds to the resolution of all the
longest outstanding TIRs within the data population.”

I believe that it can be easily appreciated that the vivid and self-evident insights that spring out of such
objective graphical portrayal of factual and quantitative software project analyses could with great
advantage be readily promulgated and understood within the conduct of an Online Dispute Resolution.

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 7 of 19 June 2004
and Dr Stephen Castell

POLIT – Performance, Operability and Locking Investigation Task

Even when the functionality provided by the software is acceptable, litigious allegations can be made over its
run-time performance, perhaps expressed as ‘response times did not meet those stipulated in the contract’.
To form an expert view, a system sizing and performance model may be constructed.

POLIT uses such a model to establish inter alia a resource usage profile for key transactions used in testing
scripts in order to:

(a) give a measure of the likely performance of a full system workload
(b) identify ways in which performance could be optimised or improved.

Critical resources investigated are:

(i) disk accesses and
(ii) cpu usage.

Key variables examined include:

* Resources used by log-in processes
* Paging-in of the application software the first time it is used
* Impact of different cache sizes
* Impact of different batch sizes
* Overhead of menu navigation when repeating the same process
* Effect of spreading the database
* Effect of shadowing (using two identical copies of the database).

It may be glimpsed that POLIT can become deeply technical and abstruse, and it is a challenge to the
expert to explain the methodology, the model and the conclusions it delivers in a way understandable, for
example, to lawyers or to the court. However, when that challenge has been met, the findings arising can
also, once again, be readily shared with all those involved in an Online Dispute Resolution, by way for
example of interactive web page presentation. Such presentation may perhaps even allow those involved to
carry out their own ‘what if’ exercises using the expert system sizing and performance model provided.

Some further Forensic Systems Analysis tasks, the findings of each of which are I believe readily adaptable
to being used in Online Dispute Resolution, are – briefly – as follows:

FUDDER – FUndamental Database and DEsign Review

Often there are allegations of ‘fundamental software design flaws’: this task assesses a range of accepted
software engineering design parameters, and their documentation, to give an opinion on the completeness,
correctness and robustness of the software, database and communications architectures in terms of their
suitability for building, testing and implementing a system meeting all required contractual obligations.

PROMADET – PROject Management And Delay Examination Task

‘Slippage’ in project schedules is extremely common in large software development projects. The expert is
often asked to answer the question: “Who was to blame for the delays ?”. This task examines GANTT
charts and the like, drawn and re-drawn throughout the project, together with associated project
management documentation (e.g. Minutes of Project Board/Committee Meetings) and work records, as well
as the ‘fossil record’ of the evolution of the construction of the software source code itself.

It should be noted that it can be difficult to ‘win a case only on an allegation of delay’: the very meaning of
‘delay’, and the evidence and reasons for its occurrence, are usually not easy to determine, or present
clearly, for any software project which has gone on for several years. Very often the best that can be said is
only that ‘everyone was equally responsible’ – not a particularly helpful opinion for an expert to give !

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 8 of 19 June 2004
and Dr Stephen Castell

EVOCRAT – EVOlution of Changes to Requirements Analysis Task

As I have said, constant contract variation caused by ‘specification drift’ is a common experience in most
sizeable software development projects. The expert is asked to give his view as to what all such changes
amount to in terms of ‘What was the final Statement of Requirements – what was the detailed contractual
specification at the end of this process of change ?’. EVOCRAT assesses all documents purporting to state
new or changed requirements, and consolidates them into a unified specification.

Conclusions

Given that the key to arriving at a useful and helpful expert opinion in complex software contract cases is
testing of the software in dispute, I believe that the techniques and findings of the CASTELL Forensic
Systems Analysis methodology can readily be applied to resolving disputes in the context of Online Dispute
Resolution.

If the parties involved in the ODR can agree to apply these rigorous techniques they can clearly create a
growing corpus of shared objective results, using a process which could perhaps be set out along the
following lines:

1. Where technically possible, make the software in dispute accessible via the web.

2. Publish/disclose appropriate User Guides.

4. Experts on both sides design agreed test plans, scripts, expected results – publish/disclose them.

3. Once the EFLAT and EAT tasks based on such agreed plans etc have been undertaken, publish/disclose
the relevant findings in Scott Schedules in standard/agreed form (see e.g. Annex A and Annex B hereof).

4. Further tests can then be done, and results and expert inferences/opinions added to the Scott Schedules
– e.g. via hotlinks.

I believe that the benefits of such an approach in complex software contract disputes, presenting the
objective findings of the IT Expert in the context of Online Dispute Resolution, could be substantial.
Through online presentation, demonstration and accretion of the results of Forensic Systems Analysis, the IT
Expert can provide illuminating and dramatic insights into the state of the software in dispute, and
contribute mightily to saving time and costs in, and facilitating rapid settlement of, such technically complex
disputes.

© 2004 CASTELL Consulting and Dr Stephen Castell

*Dr Stephen Castell, Chartered IT Professional, Chairman of CASTELL Consulting (founded
1978), is an internationally acknowledged independent computer expert. As an IT Expert
Witness in computer disputes and litigation Dr Castell has acted in more than 100 major cases
worldwide over the past 15 years, including the largest and longest software development
contract actions to have reached trial in the English High Court, and one of the most
technologically complex cases to be heard in the Sydney Commercial Court. He is also
experienced as a (CEDR-trained) Mediator, an ICC Arbitrator, and Expert Determiner.

Dr Stephen Castell, Chairman
CASTELL Consulting
Tel: +44 1621 891 776 www.CASTELLConsulting.com
Mob: +44 7831 349 162
Fax: +44 1621 892 553 European Representative Office:
Email: cstll01@attglobal.net Angel Enterprises
PO Box 334, Witham, 6, rue Massenet, 06000 Nice, France
Essex CM8 3LP, United Kingdom Tel & Fax: +33 (0)4 93 16 97 05

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 9 of 19 June 2004
and Dr Stephen Castell

Notes

[1] The following are just some of the many assignments in which CASTELL Consulting has been involved:

UK - longest computer software English High Court Trial: GEC Marconi vs. London Fire
and Civil Defence Authority (1991-92).

UK - largest outsourcing/software development contract English High Court case: Airtours vs. EDS,
£200m+ claim; £50m+ counter-claim (2001).

Court of Sessions, Edinburgh, Scotland – Materials and Manufacturing software contract litigation
(1999-2003).

UK Arbitrations – high-profile cases re (1) Real-Time Mobilising System on behalf of Metropolitan
Ambulance Service (1993); and (2) Courts System on behalf of Central Government Department
(1994-95).

UK – High Court Litigation: Army Personnel Records, Document Management/Workflow
System dispute, Ministry of Defence vs. BT Syntegra (1998-2000).

UK – International Chamber of Commerce (Paris) Arbitration, London: UK and German
disputants – Arbitrator in a 3-man Arbitral Tribunal (2000-2001).

France, and Melbourne, Australia – on behalf of major French traffic engineering and electronics
company, and International Joint Venture Consortium, prepared a Preliminary Expert’s Report in
connection with electronic tolling system software for Australia’s largest road infrastructure project
(2000-2002).

Sydney, Australia – one of the most technically complex cases in the Sydney Commercial Court:
prepared Expert’s Reports using specially-developed Forensic Systems Analysis techniques to assess
quality of 6-module ERP software suite for 19 universities - CHA vs. Unipower (1997-98).

Dublin, Ireland – ERP/Manufacturing software contract litigation (2000).

Milan, Italy – Health Information Systems project termination (200-2001).

Riga, Latvia – Retail Banking Systems dispute (2002).

UK - IT Outsourcing Benchmarking: definitive case in connection with leading C&W vs IBM High
Court Action over methodologies used and results found in an Outsourcing Value Analysis project as
undertaken by a major IT Benchmarking Consultancy (2004).

UK and USA – computers forensics: determining the presence of, and retrieving, electronic
documents from computer PC harddisks and server systems as evidence in e.g. criminal and fraud
legal proceedings (2003-2004).

UK – Telecoms: on behalf of British Telecom, determining the validity of telephone subscriber
numbers and usage in regard to multi-million pound contract dispute with local retail telephony
Service Provider (2004).

USA – Telecoms and Broadcasting - Patents and Intellectual Property actions: e.g. databroadcasting
and billing systems (2003-2004).

In many of these cases, we have worked very successful with indemnity insurers (for example Hiscox, the
world’s leading IT&T and media insurers) and have frequently achieved rapid, highly cost-effective
settlement of disputes upon exchange of our Expert’s Reports.

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 10 of 19 June 2004
and Dr Stephen Castell

[2] See for example:

a. ‘Give the IT expert a chance, please… Dr Stephen Castell offers a helpful mini-handbook of suggestions
to solicitors for instructing him as computer expert witness in complex software implementation contract
disputes…’, The Barrister, June 2004.

b. ‘Recognising early the signature of DISPRO – The IT DISaster PROject’, Stephen Castell, paper presented
at the CLT London Conference ‘Buying Computer Systems’, held 12 November 2003. Stephen Castell
conceived and Co-Chaired this Conference (with John Boyd QC), which included a Mock Trial, and which
dealt inter alia with how to:

 Assure quality software supply and delivery processes
 Avoid the pitfalls of systems projects failures
 Resolve disputes between customers and suppliers
 Assess objectively the quality and fitness for purpose of the system supplied
 Learn from the mistakes of others
 Measure, secure and protect IT investment.

c. ‘Split your outsourcing contracts to guard against legal disputes’, John Kavanagh, Computer Weekly, 14
October 2003, Career moves, British Computer Society, page 76.

d. ‘How to avoid project disasters’, Stephen Castell, Butler Group Review, Management Matters, September
2003, page 23.

e. ‘Low-stress development. Contracting out software development – on its own or as part of a wider IT
management agreement – demands close attention to many specific issues. Stephen Castell shares some
lessons that many companies are learning the hard way’, British Computer Society, The Computer Bulletin,
September 2003, pages 24-25.

f. ‘The role of the IT expert witness in software and systems development/implementation contract disputes
and litigation’, Stephen Castell, Expert Witness Institute Newsletter, Summer 2003, pages 1-3 (synopsis of a
talk given in London to the Association of Independent Computer Specialists, 10 October 2002). [Published
also in the Computer Law & Security Report, Vol. 19, No. 3, 2003, pages 228-231].

g. ‘Key role of expert witnesses’, Stephen Castell, The Times Law Letters, 25 March 2003, page 10.

h. ‘IT Expert and Counsel in Computer Software Disputes – Professionals in Harmony’, Stephen Castell, The
Barrister, 1 October 2001, pages 6-7. [Published also in Information Security Bulletin, Vol, 7, Issue 11,
November 2002, pages 39-40, as ‘IT Expert And Legal Counsel – Ad Idem in Computer Software Disputes’].

i. ‘Quick’n’dirty resolves it. Grania Langdon-Down assesses the worth of expert determination’, The Times,
15 February 2000: “Stephen Castell, an IT consultant who has acted as expert witness, mediator and
arbitrator, said expert determination might be a way of resolving disputes more quickly and simply than
waiting for them to settle just before court…”.

j. ‘Reality Bytes’, Matt Barnard, Special Report: Expert Witnesses, The Lawyer, 22 November 1999, pages
29-30: “… ‘… software … [is] going to become an increasingly common area of dispute…. You could
almost imagine a whole new industry of technological dispute resolution growing up,’ says Castell”.

k. ‘Software: hard evidence. Stephen Castell says the key to unravelling computer software disputes is
understanding what is meant by “software quality”’, Experts: IT Systems, Stephen Castell, Legal Week, 29
April 1999, page 25.

l. ‘The Millennium Bug: Well of course it’s a Software Fault but is it Contractually a Material Defect ?’,
Stephen Castell. Presentation given at the ‘Millennium Bug: Who will pay the price ?’ Meeting and ‘Mock
Trial’, co-sponsored by Berrymans Lace Mawer, Solicitors; The Institution of Electrical Engineers; and the
Law Specialist Group of the British Computer Society, and held at the IEE, Savoy Place, London, 12 January
1999.

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 11 of 19 June 2004
and Dr Stephen Castell

m. ‘Are mission critical computer systems creating litigation ?’, Stephen Castell, IN BRIEF,
November/December 1998, page 45.

n. Letters published in the Law Society’s Gazette:

- ‘Y2K FALLACY’, Stephen Castell, LSG, 20 January 1999.
 - ‘BUG BOTHER’, Jonathan Mounteney, LSG 6 January 1999;
 - ‘BUGGED BY BOLITHO’, Stephen Castell, LSG 16 December 1998;
 - ‘ERADICATING THE BUG’, Stephen Castell, LSG 30 September 1998;

o. ‘Computer Litigation – Somewhere in Your Future ?’, Stephen Castell, Information Security Bulletin,
Volume 3, Issue 4, June 1998, Page 23ff.:
“… clear computer judgments, founded on a proper understanding by the Court of established professional
and technical principles and computer system development methodologies, are arguably badly needed as
precedents by the computer software industry and its legal advisers alike…”

p. ‘Ironing out the bugs. When it comes to solving computer disputes, an independent expert may well
prove more effective than a heavily armed lawyer’, Stephen Castell, IT Chapter Section of Charter, the
Journal of the Institute of Chartered Accountants in Australia, November 1997:
“Those responsible for keeping company… records, including software development project management
and technical documentation (… not forgetting… e-mails and other Internet/Intranet documents), should
always bear in mind the potential need for their disclosure in a legal action…”

q. ‘Computer Litigation – an expert speaks’, Stephen Castell, IN BRIEF, June 1997:
“There has been a dramatic increase in the number of computer-related disputes ending up in court…”.

r. ‘COURT IN THE ACT’, Computer Weekly, 13 February 1997:
“Who is to blame for the year 2000 problem and why should lawyers really care when they are likely to get
paid huge sums for arguing the toss ? Shan Kelly reports on the battle lines being drawn over year 2000
liability… who exactly is responsible for the fact that most computers don’t understand four-digit dates ?
Who is to blame for most companies being forced to spend the equivalent of one-and-a-half times their
annual IT budget explaining to computerised systems that the year 2000 comes after 1999 and that it is a
leap year ? The British Computer Society (BCS) Law Specialist Group, which now has more than 400
members, has been giving detailed consideration to the issue…”.

s. ‘Seeking after the truth in computer evidence: any proof of ATM fraud ?’, Stephen Castell, Computer
Bulletin, December 1996, pp. 17-19:
“… my study on computer evidence for the CCTA… highlighted the need for computer systems and
operational practices properly capable of forensic scrutiny, delivering undoubted evidential reliability… every
criminal trial which seeks to rely on computer evidence should first be a trial of the computer systems from
which evidence is to be derived.”

[3] The name Forensic Systems Analysis was first coined by Larry Traynor, a Senior CASTELL Associate
Consultant working as part of the CASTELL Consulting expert team instructed during 1991-92 on the GEC
Marconi Ltd –v– London Fire and Civil Defence Authority case [1989-ORB-No. 1208]. (Forensic Systems
Analysis should not be confused with ‘computer forensics’ a more recent, and non-proprietary, expression,
which occurs in relation to ‘low-level’ technical tools and techniques for obtaining computer evidence from
e.g. computer disks in – principally – criminal cases.)

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 12 of 19 June 2004
and Dr Stephen Castell

Annex A

CASTELL Pro-Forma for Scott Schedule (of Software Defects)

Part A of Schedule
Identification of each Item in the Schedule

Column Column Heading and Further Explanation Short-Form
in Schedule

1. A1 Item Number ‘Item’

Sequential reference number for each item

2. A2 Brief Description/Title ‘Title’

3. A3 TIR Reference Number ‘TIR No.’

Part B of Schedule
Details of Software Requirements and Software Defects for each Item

Column Column Heading and Further Explanation Short-Form
in Schedule

4. B1 Detailed Description of Software Requirements ‘Requirements’
 Here, the Customer sets out to the fullest extent possible

a clear and complete presentation of what precisely it says
were the contractual software requirements for this Item

5. B2 Statement of Requirements Reference(s) ‘SoR Refs’

6. B3 Other Specification or Contractual ‘Other Refs’

Document Reference(s)

7. B4 Details of Acceptance Testing ‘Tests Done’

8. B5 Acceptance Test Material Reference(s) ‘Test Refs’

9. B6 Detailed Description of Defects ‘Defects’
 [For this Item, what does the Customer allege were the defects

in respect of which the software allegedly failed testing ?]
 Here, the Customer sets out to the fullest extent possible a

clear and complete presentation of the alleged defects in
this Item, why they are considered by the Customer to be so, any
exhibits arising from its testing (e.g. screen printouts) which it says
demonstrate the defects, etc etc. This should include specific
program/software module references etc etc

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 13 of 19 June 2004
and Dr Stephen Castell

Part B of Schedule (continued)
Details of Software Requirements and Software Defects for each Item

Column Column Heading and Further Explanation Short-Form
in Schedule

10. B7 Type of Acceptance Criteria Failed, for example: ‘Criteria’
 ‘F’ - Functionality
 ‘O’ - Operability
 ‘P’ - Performance

11. B8 Date Defect Discovered by the Customer ‘Date Found’

12. B9 Date Defect Notified by Customer to the Supplier ‘Date Notified’

13. B10 Supplier’s Response and Comments ‘Supp. Response’

regarding Software Requirements and Defects

14. B11 Supplier’s Documentary References ‘Supp. Docs’

regarding Software Requirements and Defects

15. B12 Details of any legal issues to be determined ‘Legal Issues 1’

regarding Software Requirements and Defects

Part C of Schedule
Details of Materiality of Software Defects

Column Column Heading and Further Explanation Short-Form
in Schedule

16. C1 Materiality: Consequential Effect ‘Cust. - Effect’
 [To be considered a material defect an alleged software defect

should unequivocally meet a generally accepted test, viz:
It must have a large consequential effect if left unfixed and
it must take, or have taken, a long time to fix (both must be true)]

 Here, the Customer sets out what it believed was or would
have been the consequential effect of the Item if left unfixed

17. C2 Supplier’s Response and Comments ‘Supp. - Effect’
 regarding Materiality: Consequential Effect

18. C3 Materiality: Time to Fix ‘Supp.– Fix Time’
 [To be considered a material defect an alleged software defect

should unequivocally meet a generally accepted test, viz:
It must have a large consequential effect if left unfixed and
it must take, or have taken, a long time to fix (both must be true)]

 Here, the Supplier sets out the time it estimated it would have
taken, or states the time it actually did take, to fix the Item.

19. C4 Customer’s Response and Comments ‘Cust. – Fix Time’
 regarding Materiality: Time to Fix

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 14 of 19 June 2004
and Dr Stephen Castell

Part C of Schedule (continued)
Details of Materiality of Software Defects

Column Column Heading and Further Explanation Short-Form
in Schedule

20. C5 Materiality: Details of Workaround (if any) ‘W/A – Cust.’

Available During Acceptance Test: Customer’s View
 [If during an Acceptance Test there is available a workaround

to an encountered software defect, it is generally held that
(since the point of an Acceptance Test is to try to accept, not reject,
the software being tested) the defect should not be considered as a
material defect. The defect may still however need to be fixed before
final implementation of the software if the workaround is not, in the
opinion of the customer, an acceptable permanent alternative]

 Here, the Customer gives its view as to whether or not
 there was any workaround available for this Item;
 and, if so, what it was; and whether or not it was

acceptable to the Customer as a permanent alternative
(and if not, why not)

21. C6 Materiality: Details of Workaround (if any) ‘W/A – Supp.’

Available During Acceptance Test: Supplier’s View
 [If during an Acceptance Test there is available a workaround

to an encountered software defect, it is generally held that
(since the point of an Acceptance Test is to try to accept, not reject,
the software being tested) the defect should not be considered as a
material defect. The defect may still however need to be fixed before
final implementation of the software if the workaround is not, in the
opinion of the customer, an acceptable permanent alternative]

 Here, the Supplier gives its view as to whether or not
 there was any workaround available for this Item;
 and, if so, what it believes it was

22. C7 Details of any legal issues to be determined ‘Legal Issues 2’

regarding Materiality of Software Defects

Part D of Schedule
Determination of the Item

Column Column Heading and Further Explanation Short-Form
in Schedule

23. D1 New Evidence: Results of Repeat Tests ‘Repeat Tests’

[For this Item, what tests did the Customer conduct to establish its
allegations ? If the Court wishes to re-visit such tests,
what details need to be available ?]
Details of any Repeats of the Test(s) done by the Customer,
ordered by/carried out for the Court to assist in its
determining the Item, together with the Results thereof

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 15 of 19 June 2004
and Dr Stephen Castell

Part D of Schedule (continued)
Determination of the Item

Column Column Heading and Further Explanation Short-Form
in Schedule

24. D2 New Evidence: Results of New Tests ‘New Tests’

Details of any New Test(s) ordered by/carried out for the
Court to assist in its determining the
Item, together with the Results thereof

25. D3 New Evidence: Customer’s Independent ‘Cust. Expert’

Expert’s Opinion on this Item

26. D4 New Evidence: Supplier’s Independent ‘Supp. Expert’

Expert’s Opinion on this Item

27. D5 Court’s Determination: ‘Court 1’

For this Item, were the Software Requirements as detailed by
the Customer actually contractual software requirements?
‘Y’ - ‘Yes’
‘N’ - ‘No’

28. D6 Court’s Determination: ‘Court 2’
For this Item, did the Customer’s tests as implemented for the software
utilise the Acceptance Test Material as accepted by the Supplier?
‘Y’ - ‘Yes’
‘N’ - ‘No’

29. D7 Court’s Determination: ‘Court 3’
For this Item, were the Supplier’s tests appropriate ?
‘Y’ - ‘Yes’
‘N’ - ‘No’

30. D8 Court’s Determination: ‘Court 4’

For this Item, were the Customer’s tests
conducted appropriately ?
‘Y’ - ‘Yes’
‘N’ - ‘No’

30. D9 Court’s Determination: ‘Court 5’

For this Item, did the Customer’s tests properly
identify the alleged defect, ie were the consequent
results correct and presented such that the Supplier could
properly address the alleged defect ?
‘Y’ - ‘Yes’
‘N’ - ‘No’

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 16 of 19 June 2004
and Dr Stephen Castell

Part D of Schedule (continued)
Determination of the Item

Column Column Heading and Further Explanation Short-Form
in Schedule

31. D10 Court’s Determination: ‘Court 6a’

a. For this Item, was the alleged defect actually a defect ?
‘Y’ - ‘Yes’
‘N’ - ‘No’

 b. If so, was the defect a material defect ? ‘Court 6b’
‘Y’ - ‘Yes’
‘N’ - ‘No’

32. D11 Details of any legal issues to be determined ‘Legal Issues 3’

regarding Determination of the Item

33. D12 Judge: Comments and Decision ‘Judgment’

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 17 of 19 June 2004
and Dr Stephen Castell

Annex B

CASTELL Pro-Forma for Scott Schedule (of Software Extras)

Part A of Schedule
Identification of each Item in the Schedule

Column Column Heading and Further Explanation Short-Form
in Schedule

1. A1 Item Number ‘Item’

Sequential reference number for each item

2. A2 Brief Description/Title ‘Title’

3. A3 Project Reference Number ‘Proj. No.’

4. A4 Module/Program Number ‘Module’

Module/program number as appropriate to identify
the area of the applications software under review

Part B of Schedule
Details of the Extra, the Original Requirement and Delivery of the Extra

Column Column Heading and Further Explanation Short-Form
in Schedule

5. B1 Customer’s Definition of the New Requirement ‘Req-Cust.’

Definition of the new, modified or extra requirement,
and references to the source of the requirement

6. B2 Detailed Description of the Extra ‘Extra’

How the requirement was implemented and any
supporting document references (eg design specifications)

7. B3 Support or otherwise for the original software ‘SoR Refs’
Support for the original software as defined by the signed-off Statement of
Requirements and other relevant material

8. B4 Other Specification/Contractual References ‘Other Refs’
Any further support for the original requirement
(eg ‘mini-specifications’, correspondence etc)

9. B5 Further Comments from the Supplier ‘Supp. Comm’
Any further comments/references from the Supplier in
support of the claim that the work and materials were in
excess of those required by the Contract

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 18 of 19 June 2004
and Dr Stephen Castell

Part B of Schedule (continued)
Details of the Extra, the Original Requirement and Delivery of the Extra

Column Column Heading and Further Explanation Short-Form
in Schedule

10. B6 Customer’s Response relating to the Item ‘Cust. Resp’

Customer to justify any reasons it may have
 for the item not being classified as an extra, including
 references to the SoR and any other specifications
 or references that it believes to be appropriate

11. B7 Details of the Delivery of the Item of Extra Work ‘Supp. Del’
Supplier to provide evidence of the date of delivery of the item

12. B8 Customer Response to the Delivery of the Item ‘Cust. Del’
Customer to identify any deficiencies or inadequacies in
either the delivery or the completeness of the item

13. B9 Details of any legal issues to be determined ‘Legal Issues 1’

regarding Determination of the Item

Part C of Schedule
Determination of the Item

Column Column Heading and Further Explanation Short-Form
in Schedule

14. C1 New Evidence: Results of Repeat Assessments ‘Repeat Assess’

[For this Item, what assessments did the Supplier conduct to establish its
claims ? If the Court wishes to re-visit them, what details need to be available ?]
Details of any Repeats of the Assessment(s) performed
by the Supplier, ordered by/carried out for the Court to assist in its
determining the Item, together with the Results thereof

15. C2 New Evidence: Results of New Assessments ‘New Assess’

Details of any New Assessment(s) ordered by/carried out for the Court to assist in its
determining the Item, together with the Results thereof

16. C3 New Evidence: Customer’s Independent ‘Cust. Expert’

Expert’s Opinion on this Item

17. C4 New Evidence: Supplier’s Independent ‘Supp. Expert’

Expert’s Opinion on this Item

18. C5 Court’s Determination: ‘Court 1’

For this Item, did the Supplier carry out work and provide
materials in excess of those required by the Contract ?
‘Y’ - ‘Yes’
‘N’ - ‘No’

 The Benefits of ODR in Complex Software Contract Disputes

© 2004 CASTELL Consulting Page 19 of 19 June 2004
and Dr Stephen Castell

Part C of Schedule (continued)
Determination of the Item

Column Column Heading and Further Explanation Short-Form
in Schedule

19. C6 Court’s Determination: ‘Court 2’

For this Item, did the Supplier deliver the item of extra work
to the Customer ?
‘Y’ - ‘Yes’
‘N’ - ‘No’

20. C7 Details of any legal issues to be determined ‘Legal Issues 2’

regarding Determination of the Item

21. C8 Judge: Comments and Decision ‘Judgment’

[7,800 words approximately]

spc 23.05.1999-16.06.2004 The Benefits of ODR in Complex Software Contract Disputes.doc

