ONE DESIGN ENGINEER’S FAVORITE WASTEWATER PUMP STATION DESIGN FEATURES

(And Some Things To Avoid)

CWEA Annual Conference
Sacramento, CA April 20, 2012

Bonneau Dickson, PE
Consulting Sanitary Engineer
2428 McGee Avenue
Berkeley, CA 94703

Tel. 510 845 8625
Fax. 510 845 4606
dickson.bonneau@gmail.com
THIS PRESENTATION

• Introduction
• Evolution of pump station design
• Number of pumps
• Backup/standby/reliability facilities
• Design details
• Future trends
• Case histories/Horror stories

Bonneau Dickson, PE
Consulting Sanitary Engineer
THE SPEAKER’S PERSPECTIVE

- Independent consulting sanitary engineer
- Smaller pump stations
- Wastewater rather than clean water
- United States versus third world
NEVER BUT NEVER QUESTION IT

ENGINEER'S

JUDGEMENT
TYPES OF PUMP STATIONS
EVOLUTION DUE TO CHANGES IN TECHNOLOGY

• Non clog pumps
• Submersible motors
• Variable frequency drives (VFDs)
• Magnetic flow meters
• Plastic liners
EVOLUTION DUE TO CHANGES IN REGULATIONS

• Confined space
• Fall restraint and arrest
• Environmental exposure
• Arc flash
WASTEWATER PUMP STATION CONFIGURATIONS

- Dry pit/wet pit. Forever.
- Pneumatic ejectors. 1950s.
- Underground pump stations. (Smith & Loveless). 1960s.
- Suction lift pump stations. (Gorman Rupp). 1980s.
- Submersible pump stations. 1980s.
- Dry pit submersible pumps
- Small grinder pumps and small pressure sewers
DRY PIT PUMP STATION
PUMPS IN SERIES WITH A SINGLE BELT DRIVE

Bonneau Dickson, PE Consulting Sanitary Engineer
POSSUM FAT?
BAD WINE??

Bonneau Dickson, PE Consulting Sanitary Engineer
SAN BRUNO OLYMPIC PUMP STATION
SAN BRUNO OLYMPIC VERTICAL SHAFT PUMP STATION

Bonneau Dickson, PE Consulting Sanitary Engineer
SAN BRUNO CRESTMOOR SUCTION LIFT PUMP STATION

Bonneau Dickson, PE Consulting Sanitary Engineer
Underground Pump Stations
Gavilan College Pump Station
SUBMERSIBLE PUMP STATION AT A CHEESE FACTORY, SONOMA, CA

Bonneau Dickson, PE Consulting Sanitary Engineer
PLAN OF SUBMERSIBLE PUMP STATION
SECTION THROUGH SUBMERSIBLE PUMP STATION
SMALL SUBMERSIBLE STATION
SMALL SUBMERSIBLE STATION
SMALL GRINDER PUMP STATION

SMALL GRINDER PUMP STATION
WITH SMALL DIAMETER FORCE MAIN
REHABS

• Many possibilities
• Dry pit submersibles in existing dry pits
• Wet well in a wet well
• Pumps in a septic tank
• Additional pumps in the wet well of a dry pit pump station
SUBMERSIBLE PUMP STATION

ADVANTAGES

• Pumping equipment not accessible to unauthorized persons
• Pump can be easily withdrawn for maintenance
• Wet well rarely has to be entered
• Minimal confined space problems
• No superstructure
• No noise
• Lower cost

Bonneau Dickson, PE Consulting Sanitary Engineer
SUBMERSIBLE PUMP STATIONS

DISADVANTAGES

• Danger of falling into the wet well

• Motor requires specialized maintenance

• Electrical equipment is above ground
 • (But you can have a building)

• Requires a separate valve box
BACKUP/STANDBY RELIABILITY FACILITIES

• What are the likely causes of failure?

• What do you need?

• What do you have?
GENERATORS

• Only serve to replace utility power.

• Cannot help if electrical system is burned out.

• Do allow controls to be used.

• Provide lighting and use of electrical tools.
STATIONARY GENERATORS

• Time To Spill, Hours
• Design Decision
• <= 1
 • Probably ought to have a stationary generator, unless a spill will do little harm.
• 1 to 4
 • Case by case basis.
• >= 4
 • Probably can back the station up by other means.

Bonneau Dickson, PE Consulting Sanitary Engineer
STATIONARY GENERATOR, SECLINE PUMP STATION, NORTH LAKE TAHOE

Bonneau Dickson, PE Consulting Sanitary Engineer
STATIONARY GENERATORS (Cont.)

• Considerable maintenance.

• Need to be exercised. 30 minutes/month +/-.

• Noisy. (But exercise time can be selected).

• $50,000 to $100,000 in small sizes. (<= 100 KW).

• Diesel versus natural gas.
MOBILE GENERATORS

• Time to deploy.
• Traffic delays.
• Manual control, must be attended.
• Same limitations as stationary generators -- only electrical.

Bonneau Dickson, PE Consulting Sanitary Engineer
MOBIL GENERATOR AND QUICK CONNECT, NORTH LAKE TAHOE
MOBILE GENERATORS (Cont).

• Manual transfer switch
• The receptacle problem
• Multiple voltages. 110, 208?, 220, 440.
• Limited size. Rarely have a really big one.
MOBILE PUMPS

• Don't need the electrical facilities.

• Time to deploy.

• Traffic delays.

• Manual control, must be attended.

• Need access to the force main.
OTHER BACKUP METHODS

• Alternative power feeder
• Engine driven pumps
• Storage
• Gravity overflow/diversion
• Spare pumps
• Trucks
• Small generators. Welders.
STORAGE

- Placer County Standards allow storage in lieu of a generator

- Can be a large horizontal pipe

- There can be a large amount of "horizontal storage" in flat country

- Large tankage usually is prohibitively expensive. $2/gallon.

Bonneau Dickson, PE Consulting Sanitary Engineer
GRAVITY OVERFLOW

• Overflow to a different sewer system before spilling
• May silt up if used for a long time
• Usually feasible only in flat country
ARVIN, CA. GRAVITY OVERFLOW?

Bonneau Dickson, PE Consulting Sanitary Engineer
TRUCKS

• Vactor trucks. Can load themselves.
• Tanker trucks. Need separate pumps.
• Septic service trucks.
OUTSIDE HELP

- Mutual aid from other agencies or other parts of your organization
- Equipment rental companies
- Purchases of equipment
- Local contractors
- Septic service companies

Bonneau Dickson, PE Consulting Sanitary Engineer
STANDBY STRATEGY

• Which backup equipment can back up which pump stations?

• If power fails to all pump stations (the earthquake scenario), where should the available standby facilities be deployed?

• The Standby Alternatives matrix
AVAILABLE STANDBY EQUIPMENT

TABLE 4-1

LIST OF STANDBY EQUIPMENT

<table>
<thead>
<tr>
<th>Alternative</th>
<th>GPM</th>
<th>Head, Feet</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutz Mobile Pump</td>
<td>600</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Lister Mobile Pump</td>
<td>300</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Deutz and Lister Pumps</td>
<td>900</td>
<td>75</td>
<td>Both pumps together.</td>
</tr>
<tr>
<td>Electric Driven Mobile Pump</td>
<td>600</td>
<td>35</td>
<td>Requires electric power.</td>
</tr>
<tr>
<td>Teel 5 HP Trash Pump</td>
<td>200</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Edison Diaphragm Pump</td>
<td>30</td>
<td>High</td>
<td>3 HP Briggs & Stratton engine.</td>
</tr>
<tr>
<td>Wilden Diaphragm Pump, Air Driven</td>
<td>20</td>
<td>High</td>
<td>Requires the 10 HP air compressor.</td>
</tr>
<tr>
<td>Ebarra Electric (3 Pumps)</td>
<td>21</td>
<td>24</td>
<td>Require electric power.</td>
</tr>
<tr>
<td>Rented Pumps</td>
<td>Any</td>
<td>Any</td>
<td>May take some time to rent.</td>
</tr>
<tr>
<td>Stationary Generator</td>
<td>50</td>
<td>KW</td>
<td>Only available at the Merced Pump Sta.</td>
</tr>
<tr>
<td>Mobile 60 KW Generator</td>
<td></td>
<td></td>
<td>Needs voltage selector switch.</td>
</tr>
<tr>
<td>Electric Arc Welder</td>
<td></td>
<td></td>
<td>Only adequate for the Sylvan Circle Pump Sta.</td>
</tr>
<tr>
<td>Rented Generators</td>
<td></td>
<td></td>
<td>May take some time to rent and may be in short supply during an areawide power failure.</td>
</tr>
<tr>
<td>City Vactor Trucks (2)</td>
<td></td>
<td></td>
<td>May not be available to the WPCP during an areawide emergency. Probably available for local failures.</td>
</tr>
<tr>
<td>Approx. 65 GPM average flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rented Vactor Trucks (Roto-Rooter)</td>
<td></td>
<td></td>
<td>Main office is in San Leandro. Three vactor trucks available. One hour maximum response time.</td>
</tr>
</tbody>
</table>

Bonneau Dickson, PE Consulting Sanitary Engineer
TABLE 4-2

STANDBY ALTERNATIVES FOR EACH PUMP STATION

<table>
<thead>
<tr>
<th>Standby Unit</th>
<th>Major Pump Stations</th>
<th>Minor Pump Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bermuda</td>
<td>Merced</td>
</tr>
<tr>
<td></td>
<td>Peak Flow</td>
<td>Average Flow</td>
</tr>
<tr>
<td>Deutz Mobile Pump</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lister Mobile Pump</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Deutz and Lister Pumps</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Electric Mobile Pump (+ Gen)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Teel Trash Pump</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Edison Diaphragm Pump</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wilden Diaphragm w Air Comp.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ebarra Elec. Submers. (+Gen)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rented Engine Driven Pumps</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Stationary Generators</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>60 KW Mobile Generator</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Electric Arc Welder</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rented Generators</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>City Vactor Trucks</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Private Vactor Trucks (Roto-Rooter)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Alternatives for Widespread Pump Station Failures

- Deutz Mobile Pump
- Lister Mobile Pump
- Deutz and Lister Pumps
- Electric Mobile Pump (+ Gen)
- Teel Trash Pump
- Edison Diaphragm Pump
- Wilden Diaphragm w Air Comp.
- Ebarra Elec. Submers. (+Gen)
- Rented Engine Driven Pumps
- Stationary Generators
- 60 KW Mobile Generator
- Electric Arc Welder
- Rented Generators
- City Vactor Trucks
- Private Vactor Trucks (Roto-Rooter)

Additional Alternatives for Local Pump Station Failures

- City Spare Pumps
- Rented Spare Pumps
- Gravity Bypass

An "X" in a column means that this unit can provide standby support for this pump station. Bolded and underlined cells are the recommended standby alternatives in a total power failure. See Table 5-1.
DEPLOYMENT PLAN

TABLE 5-1

STANDBY EQUIPMENT DEPLOYMENT PLAN

FOR A CITY-WIDE POWER OUTAGE

<table>
<thead>
<tr>
<th>Pump Station</th>
<th>Standby Resource to be Deployed</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAJOR PUMP STATIONS</td>
<td></td>
</tr>
<tr>
<td>Bermuda</td>
<td>Deutz pump.</td>
</tr>
<tr>
<td>Merced</td>
<td>On-site stationary generator.</td>
</tr>
<tr>
<td>Neptune</td>
<td>60 KW mobile generator.</td>
</tr>
<tr>
<td>Wicks Extension</td>
<td>Gravity bypass. (To be installed). Or: Lister pump.</td>
</tr>
<tr>
<td>MINOR PUMP STATIONS</td>
<td></td>
</tr>
<tr>
<td>Benedict</td>
<td>Connected to hospital standby power system.</td>
</tr>
<tr>
<td>Blue Dolphin</td>
<td>Gravity bypass.</td>
</tr>
<tr>
<td>Catalina</td>
<td>Wilden diaphragm pump.</td>
</tr>
<tr>
<td>San Rafael</td>
<td>Teel trash pump.</td>
</tr>
<tr>
<td>Sylvan Circle</td>
<td>48 hour storage. Electric arc welder for power. Probably easier to use the vactor truck.</td>
</tr>
<tr>
<td>Teagarden</td>
<td>Edison diaphragm pump.</td>
</tr>
<tr>
<td>UNASSIGNED STANDBY RESOURCES</td>
<td></td>
</tr>
<tr>
<td>Lister pump.</td>
<td>(If not needed at Wicks Extension).</td>
</tr>
<tr>
<td>First City vactor truck.</td>
<td></td>
</tr>
<tr>
<td>Second City vactor truck.</td>
<td></td>
</tr>
<tr>
<td>Electric driven mobile pump.</td>
<td>(Requires a generator).</td>
</tr>
<tr>
<td>Ebarra electric submersibles.</td>
<td>(Require generators).</td>
</tr>
<tr>
<td>Rented pumps.</td>
<td></td>
</tr>
<tr>
<td>Rented generators.</td>
<td></td>
</tr>
<tr>
<td>Rented vactor trucks.</td>
<td>(One hour maximum response time).</td>
</tr>
</tbody>
</table>

Bonneau Dickson, PE Consulting Sanitary Engineer
DESIRABLE FEATURES -- 1

• Plastic lined wet wells (PVC or HDPE)
• Access to the force main. (With splitters?)
• Float backup for the analog level sensing system
• Manual override pump control. HOA switch.
FORCE MAIN QUICK CONNECT
• Variable frequency drives (VFDs)
• Bypass starters on VFDs
• 480, 3 phase electrical power
• Junction and transition electrical box near the wet well
• Everything above flood level
• Drainage back to the wet well (?). Increasingly required. The great leap backwards.
JUNCTION AND TRANSITION BOX NEAR WET WELL, SECLINE PUMP STA.
DESIRABLE FEATURES -- 3

• Pressure gauges, pointed upward.
• Wiggle room in the piping
• Air release valves
• Eccentric plug valves, plug on top when open
• Safety grate on hatch of wet well
• Magnetic flow meter
PRESSURE GAUGE, VICTAULIC, ARV, HORIZONTAL PLUG VALVE
MAGNETIC FLOW METER, SECLINE
PUMP STATION, NORTH LAKE TAHOE
DESIRABLE FEATURES -- 4

• Restrained joints. No thrust blocks
• Surge valve.
• Valves outside the wet well
• No check valve in vertical piping
DESIRABLE FEATURES -- 5

• P-trap rather than a flap gate on the valve vault drain
• Odor control port
• Soil bed scrubber
• SCADA (Supervisory Control And Data Acquisition) (As a minimum, remote alarms)
GOOD AND BAD

SUBMERSIBLE PUMP STATION
ODOR CONTROL PORT, SECLINE PUMP STATION, NORTH LAKE TAHOE
CARBON CANISTER ODOR SCRUBBER, SECLINE PUMP STATION
THE FUTURE???

• Crystal ball
• Ouija board
• Cast bones with Queequeg
FUTURE TRENDS IN PUMP STATION DESIGN--1

• Larger fines for spills. More emphasis on reliability.

• Mostly submersible type

• More use of dry pit submersible pumps for existing dry pit pump stations so pumps and motors are not destroyed by flooding.

• More pumps for more redundancy

• Dual force mains
FUTURE TRENDS IN PUMP STATION DESIGN -- 2

• More backup
• Flow meters
• Safety grates on wet wells
• Arc flash electrical equipment
• More SCADA
NUMBER OF PUMPS

• Capacity is with one of the largest pumps out of service.
• (For wastewater. Maybe not for potable water or stormwater).
• Maximum turndown with a VFD is around 50%
• On/off can affect treatment
• On/off can flood small sewers
NUMBER OF PUMPS FOR SMALLER PUMP STATIONS

- "Small" = 500 GPM, 5 - 10 HP
- On/off operation
- Two pumps
- Each 100% of peak flow
NUMBER OF PUMPS FOR LARGER PUMP STATIONS

• You want to handle average flow plus a little with a single pump

• Three or four typical

• More for very large flows and/or extreme peaking factors

• Different sized pumps for large peaking factors
NUMBER OF PUMPS TABLE

<table>
<thead>
<tr>
<th>No. of Pumps</th>
<th>% of Peak Flow</th>
<th>Peaking Factor</th>
<th>Average Flow As % Of Peak Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No Spare</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>33</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>6</td>
<td>16</td>
</tr>
</tbody>
</table>
CASE HISTORY

- Large pump station with two generators
- One generator new and tested
- Four pumps
- Spill of 175,000 gallons into Lake Tahoe
- How could this happen?
- Common point of failure
- Three 10 amp fuel pumps on a single 20 amp circuit