Your browser is currently set to block JavaScript.

For full functionality of this site it is necessary to enable JavaScript. Here are the instructions how to enable JavaScript in your web browser.

After enabling javascript, please refresh the page to go back to site with full functionality

Would you turn off/on JavaScript?

It's a widely used language that makes the web what it is today, allowing for websites to be more responsive, dynamic, and interactive. Disabling JavaScript takes websites back to a time when they were simple documents without any other features.

What are the advantages of using JavaScript?

Speed. Since JavaScript is an 'interpreted' language, it reduces the time required by other programming languages like Java for compilation. JavaScript is also a client-side script, speeding up the execution of the program as it saves the time required to connect to the server.

banner ad
Experts Logo


Failure Analysis: Collapse of Plastic Chair

By: Dr. Thomas Read

Tel: (707) 544-2374
Email Dr. Thomas Read

View Profile on

California Plastic Expert Describes a Failure Analysis of a Plastic Lawn Chair


A failed plastic lawn chair was examined to determine the cause of failure. This chair failed on the premises of a restaurant In this study the subject chair is examined and compared to several exemplar purchased at the same time. The objective of this study is to determine the cause of failure.

Summary Conclusion

This chair failure was a result of a design defect. The design of the leg and its attachment to the seat create a high stress situation that generated cracks between the leg and the seat.


The subject was examined visually and with a low power microscope. In addition, a scanning electron microscope (SEM) was used to examine the fracture surface. The type of plastic was determined using Fourier Transform Infra-red Analysis (FTIR)

Chair Inspections

Subject Chair Overview: The subject chair is shown Figure #1. The right leg of has separated from the side of the seat. There was no additional damage to the chair, and it doesn't show signs of significant UV degradation (i.e. all the surfaces remain shiny).

figure 1 image
Figure #1: Photograph of subject chair. The right leg separated from the seat; there appears to be no other significant damage to the chair.

Fractography of the Subject Failure

Both low power and SEM examination of the fracture surfaces indicate a form of low cycle fatigue. There are crack arrest lines perpendicular to the crack travel direction.

figure 2 sem photo
Figure #2: SEM Photo micrograph of subject fracture. Visible are what are considered crack arrest lines (or fatigue striations) formed during progressive failure of the chair. This is a progressive failure initiating at the top and working its way down through the leg/seat connector.

Examination of Exemplars

At the time of the site inspection all the chairs with the same design as the subject chair had at least one leg with an initial defect that was identical to the one that caused the failure of the subject chair. Three exemplars were removed from the premises for further examination. The initial defect appears as a "dirt line" where the leg is attached to the seat (Figure #3). Examination with an eye loop showed this "line" to be a starting crack (Figure #4). The legs of the exemplars had not separated from the seat; therefore, the mode of failure is progressive.

figure 3 defect in chair
Figure #3: Photographs of representative defect found on all the chairs inspected. Visually, the defect appears to be a line of dirt in the crevice formed where the leg is attached to the seat. It is also important to note the sharp radius where the leg attaches to the seat (indicated by the arrow). This is where the crack starts.

figure 4 close up of defect
Figure #4: Close up of representative defect found on all the chairs inspected. This is a 4X magnification. It shows the line to actually be a "starting" crack.

The areas of interest for the exemplars were cross-sectioned. Figure #5 shows that the crack has just started, and it does start where the leg is attached to the seat. Also, the thin sections shown in Figure #6 indicate that there is significant separation of pigment ant plastic in the region of interest. The crack initiated at this location as a result of the stress riser caused by the sharp corner. In addition, there was material separation as a result of the flow pattern in this region.

figure 5 photo micrograph
Figure #5: Photo micrograph of one cross section of a representative defect found by examining an exemplar. In this instance the crack is just starting, and it has initiated where the leg is attached to the side of the seat (Mag 16X).

figre 6 photo micrograph
Figure #6: Photo micrograph of one cross section of a representative defect found by examining an exemplar. Before the the cross-sectioning the defect was stained with iodine; in addition it is thinned down and viewed with transmitted light. The Iodine Penetrant indicates that the crack stops midway.


The design of these chairs makes them prone to failing. First the sharp corner where the leg attaches to the side of the seat creates a stress riser. In addition the leg pivots about this vulnerable hinge. There is no additional sideways support for the leg. This is best seen by comparing this design with a competitive design.

figure 7 alternate design
Figure #7: Alternate design for plastic lawn chairs. One can see that the radius of the intersection of the leg to the seat is much larger. In addition, the "triangular" shape of the leg provides significantly higher support to side loads.

Dr. Thomas L. Read, CEO of Read Consulting received his PhD. from Stanford University in 1972. He has over 25 years of manufacturing experience in electronics, metallurgy, factory safety, failure analysis, glass fracture, glass failure and bottle failure. As a member of the electronics industry, Dr. Read has earned process patents and has an extensive background in manufacturing techniques. In parallel, he has spent over twenty five years as a consultant to attorneys and engineers in the areas of failure analysis, metallurgy, glass fracture, glass failure, bottle failure, factory safety, manufacturing problems, intellectual property and patent disputes.

©Copyright - All Rights Reserved


Related articles


7/7/2009· Failure Analysis

Failure Analysis of a Broken Jam Jar

By: Dr. Thomas Read

Glass fractography is the most effective method for determining why a glass object, such as a bottle, failed. This technique consists of examining the fracture surfaces of the failure for artifacts such as Wallner lines and using them to trace the crack back to its origin. Once the origin has been identified, it can be examined in detail with a microscope to determine the cause of the failure.


4/23/2015· Failure Analysis

Weld Failure Analysis: Chair Failure Due to Inadequate Weld

By: Dr. Thomas Read

Read Consulting was asked to determine why a welded chair failed and caused injury to the person sitting in it.


8/30/2011· Failure Analysis

Metal Failure Analysis: Metal Food Contaminant Failure Analysis

By: Dr. Thomas Read

Materials failure analysis expert performs a failure analysis to determine the source of a metal piece found in tomato product.

; broker Movie Ad

Follow us

linkedin logo youtube logo rss feed logo